首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2019-06-28
55
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为Y—y=y’(x)(X一x),它与x轴的交点为[*]由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又[*]由条件2S
1
一S
2
=1,知 [*] ①式两边对x求导得[*]即yy"=(y’)
2
.令p=y’,则上述方程可化为 [*] 解得p=C
1
y,即[*]于是Y=e
C
1
x+C
2
. 注意到y(0)=1,并由①式得y’(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/siV4777K
0
考研数学二
相关试题推荐
设f(x)=3x2+x2|x|,则使f(n)(0)存在的最高阶数n为()
设f(x)=x(x+1)(x+2)…(x+n),则f’(0)=________。
累次积分∫01dx∫x1f(x,y)dy+∫12dy∫02-yf(x,y)dx可写成()
求极限。
23.证明:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
随机试题
追惟一二,仿佛如昨
某男,5岁。突发高热、呕吐、惊厥,数小时后出现面色苍白、四肢厥冷、脉搏细数、血压下降至休克水平。经实验室检查诊断为暴发型流脑所致感染中毒性休克,应采取的抗休克药物为
下列关于劳动争议处理的说法,错误的是( )。
某企业当年有生产职工为200人,当地政府确定人均月计税工作标准是800元,该企业当年发放的工资总额是210万元,该企业在计算应纳税所得额时,准予扣除的职工工会经费、职工福利费、职工教育费共()。
甲、乙、丙三方合作研发一项新技术,合作开发合同中未约定该技术成果的权利归属。新技术研发成功后,乙、丙提出申请专利,甲不同意。根据《合同法》的规定,下列关于专利申请的表述中,正确的是()。
下列关于契税的陈述,正确的有()。
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。求证:AB⊥DE;
资本主义土地私有制的特点不包括()。
在完全竞争的条件下,市场均衡意味着资源的最佳配置,而打破市场均衡的可能原因有()。
A、Returnthebikesbacktothesamepick-uppoint.B、Usethebikeforashortorlongtrip.C、Swipetheirordinarytravelcards
最新回复
(
0
)