首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2019-05-14
24
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx一x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法.求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调下降;当x=x
0
时,f(x)取最大值f(x
0
)=[*](1+lna).从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图4.13中的哪种情形. [*] 方程f(x)=0的实根个数有下列三种情形: (Ⅰ)当f(x
0
)=一[*]时,恒有f(x)<0 ([*]x∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当f(x
0
)=一[*]时,由于x∈(0,+∞),当x≠x
0
=ee时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当f(x
0
)=一[*]时,因为 [*] 故方程f(x)=0在(0,x
0
),(x
0
,+∞)各只有一个根.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/sl04777K
0
考研数学一
相关试题推荐
设u=f(x,y,z),其中f(x,y,z)有二阶连续偏导数,z=z(x,y)由方程x2+y2+z2一4z=0所确定,求。
求微分方程y"一y=excos2x的一个特解。
求两曲面x2+y2=z与一2(x2+y2)+z2=3的交线在xOy平面上的投影曲线方程。
证明L1:是异面直线,并求公垂线方程及公垂线的长。
设曲面z=f(x,y)二次可微,且≠0,证明:对任给的常数C,f(x,y)=C为一条直线的充要条件是
设函数y=y(x)由参数方程确定,求函数y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
设有一批同型号产品,其次品率记为p.现有五位检验员分别从中随机抽取n件产品,检测后的次品数分别为1,2,2,3,2.(Ⅰ)若已知p=2.5%,求n的矩估计值(Ⅱ)若已知n=100,求p的极大似然估计值(Ⅲ)在情况(Ⅱ)下,检验员从该批产品中再随机检测
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
在集合{1,2,3}中取数两次,每次任取一个数,作不放回抽样,以X与Y分别表示第一次和第二次取到的数求(X,Y)联合概率分布;
随机试题
(2008年4月)企业不同层次的管理人员所从事的管理工作具有普遍性,但层次不同其侧重点亦不同,其中高层主管侧重于______。
高于体温环境中,人体的主要散热方式为
对儿童髋关节结核,下列错误的是
治疗阴黄的代表方剂茵陈术附汤是哪位医学家创制
血液运行所依赖的生理功能有()
指出该厂可能发生爆炸的装置、设备、场所有哪些?说明爆炸的性质。指出此次事故调查组应由哪些成员构成。这道题您没有回答:×这道题总分为:3
【背景资料】某退水闸为大(1)型工程,批复概算约3亿元,某招标代理机构组织了此次招标工作。在招标文件审查会上,专家甲、乙、丙、丁、戊分别提出了如下建议:甲:为了防止投标人哄抬报价,建议招标文件规定投标报价超过标底5%的为废标。乙:投标人资格应与工程规
个人信用贷款期限最长为()年。
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
罗马法复兴时期,以研究和恢复罗马法为核心的是以下哪一个法律流派()
最新回复
(
0
)