首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就k的不同取值的情况,确定方程内根的个数,并证明你的结论。
就k的不同取值的情况,确定方程内根的个数,并证明你的结论。
admin
2022-09-05
93
问题
就k的不同取值的情况,确定方程
内根的个数,并证明你的结论。
选项
答案
设f(x)=x-[*]sinx,则f(x)在[0,[*]]上连续。 由f’(x)=1-[*]cosx=0解得f(x)在(0,[*])内的唯一驻点x
0
=arccos[*] 由于当x∈(0,x
0
)时,f’(x)<0; 当x∈(x
0
,[*])时,f’(x)>0 所以f(x)在[0,x
0
]上单调减少,在[x
0
,[*]]上单调增加,因此x
0
是f(x)在(0,[*])内的唯一最小值点,最小值y
0
=f(x
0
)=x
0
-[*]sinx
0
又因f(0)=f([*])=0,故在(0,[*])内f(x)的取值范围是(y
0
,0) 因此,当k[*][y
0
,0),即k<y
0
或k≥0时,原方程在(0,[*])内没有根。 当k=y
0
时,原方程在(0,[*])内由唯一根x
0
; 当k∈(y
0
,0)时,原方程在(0,x
0
)和(x
0
,[*])内各恰有一根,即原方程在(0,[*])内恰有两个不同的根。
解析
转载请注明原文地址:https://kaotiyun.com/show/suR4777K
0
考研数学三
相关试题推荐
设u=f(x,y,xyz),函数z=z(x,y)由exyz=(xy+z-t)dt确定,其中f连续可偏导,h连续,求x-y.
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2x在区间(0,1)上服从均匀分布.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
设k>0,则函数f(x)=lnx-+k的零点个数为().
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1,设β=,求Aβ.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
已知随机变量X的概率密度为fX(x)=。求a的值;
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.(Φ(2)=0.977.)
要使都是线性方程组Ax=0的解,只要系数矩阵A为()
随机试题
预防性劳动卫生监督工作属于
国家将土地分为()。
(2008年)分别在四杯100cm3水中加入5g乙二酸、甘油、季戊四醇、蔗糖,形成四种溶液,则这四种溶液的凝固点()。
荷兰以郁金香、风车、牧场和运河而闻名天下。郁金香是荷兰的国花,品种达二百多个。除郁金香外,还有水仙、风信子……每年的三月到九月,整个荷兰就是一个万紫千红的鲜花世界,它也因此获得了“欧洲花园”“花卉王国”的美誉。荷兰的运河纵横交错,在运河之间是一望无际的牧场
中国人民一百多年来第一次取得反帝斗争完全胜利的战争是()。
我国明确规定“中华人民共和国实行依法治国,建设社会主义法治国家”,是在对我国现行《宪法》进行()修正时作出的。
以下关于“视图”的正确描述是
It’stime______aboutthenoisepollutionlateatnight.
TheThree-YearSolutionHartwickCollege,asmallliberal-artsschoolinupstateNewYork,makesthisoffertowell-prepared
CertainphrasesonecommonlyhearsamongAmericanscapturetheirdevotiontoindividualism:"Doyourownthing.""Ididitmywa
最新回复
(
0
)