首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2021-11-09
74
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以 n一r
1
≤n一r
2
, 故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n-r(A
T
A)≤n-(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解,r(A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/suy4777K
0
考研数学二
相关试题推荐
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
二次型f(χ1,χ2,χ3)=χ12+aχ22+χ33-4χ1χ2-8χ1χ3-4χ2χ3经过正交变换化为标准形5y11+6y22-4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设n阶矩阵A与对角矩阵合同,则A是().
设z=z(χ,y)是由F(χ+,y+)=0所确定的二元函数,其中F连续可偏导,求.
设f(χ)为偶函数,且f′(-1)=2,则=_______.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(χ)=sinχ,f[φ(χ)]=1-χ2,则φ(χ)=_______,定义域为_______.
求微分方程y〞+y′2=1满足y(0)=y′(0)=0的特解.
设y=y(x)满足方程作自变量替换则y作为t的函数满足的微分方程微分方程是_________。
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
随机试题
下肢牵引时抬高床尾的主要目的是
A.肩胛间区、胸骨旁、上腹部可闻及血管杂音B.大量蛋白尿C.尿中白细胞、脓细胞较多,且有尿频、尿急史D.满月脸,多毛E.发作时血压骤升伴剧烈头痛,心悸,不发作时血压可正常患者,男性.30岁。发作性血压增高,发作时血压达200/1
关于检查创伤时的注意事项中,哪项不正确
A.单侧喉返神经损伤B.双侧喉返神经损伤C.喉上神经内支损伤D.喉上神经外支损伤E.甲状旁腺损伤甲状腺大部切除术后出现手足抽搐的原因为
兽药经营企业应当注意收集兽药使用信息,不在发现内容应当及时向所在地兽医行政管理部门报告之列的是()。
在野外常见的边坡变形破坏类型中,边坡岩体主要在重力作用下向临空方向发生长期缓慢的塑性变形现象,称为()。
记账凭证核算形式是适用于一切企业的会计核算形式。()
公开发行证券的,主承销商应当在证券上市后20日内向中国证监会报备承销总结报告,总结说明发行期间的基本情况及新股上市后的表现,并提供下列文件:募集说明书单行本;承销协议及承销团协议;律师鉴证意见(限于首次公开发行);会计师事务所验资报告;中国证监会要求的其他
下列因素中,能够决定行业进入壁垒大小的因素包括()。
与淋巴瘤发病有关的病原体是
最新回复
(
0
)