首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位阵.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位阵.
admin
2015-08-17
47
问题
设A是n阶矩阵,满足A
2
=A,且r(A)=r(0<r≤n).证明:
其中E
r
是r阶单位阵.
选项
答案
A
2
=A,A的特征值的取值为1,0,由A—A
2
=A(E一A)=0知 r(A)+r(E一A)≤n, r(A)+r(E—A)≥r(A+E—A)=r(E)=n, 故r(A)+r(E一A)=n,r(A)=r,从而r(E—A)=n—r. 对λ=1,(E--A)X=0,因r(E-A)=n一r,故有r个线性无关特征向量,设为ξ
1
,ξ
2
,……ξ
r
;对λ=0,(OE-A)X=0,即AX=0,因r(A)=r,有n一r个线性无关特征向量,设为ξ
r+1
,ξ
r+2
,……ξ
n
.故存在可逆阵P=[ξ
1
,ξ
2
,……ξ
n
],使得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/wmw4777K
0
考研数学一
相关试题推荐
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求Y的边缘密度函数;
设f(x)与g(x)在[0,1]上都是正值连续函数,且有相同的单调性.试讨论的大小关系.
设A=E=ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
计算行列式.
已知三阶方阵A,B满足关系式E+B=AB,的三个特征值分别为3,-3,0,则|B-1+2E|=_______.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:C=“某个指定的盒子不空”.
随机试题
C型普通平键b×/h×L=22×14x60的标记为;键C14×60GB1096—2003。()
关于急性胰腺炎声像图特征叙述,错误的是
内毒素错误的是
描述计算机内存的性能指标包括()。
下列各项,不属于专用记账凭证的是()。
唐代()在辋川别业中养鹿放鹤,以寄托“一生几经伤心事,不向空门何处销”的解脱情趣。
行政监察机关的行政监察监督不能对监察对象追究行政责任,给予行政处分。()
设集合X={x1,x2,x3},Y={y1,y2},Z={z1,z2},求X×Y×Z.
Whereisthisconversationprobablytakingplace?
Itistheseasonforsomefranticlast-minutemath—acrossthecountry,employeesofallstripesarecountingbackwardinanatte
最新回复
(
0
)