首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记 证明:存在一点η∈(1,2),使得|f’(η)|≥2M。
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记 证明:存在一点η∈(1,2),使得|f’(η)|≥2M。
admin
2021-12-14
38
问题
设f(x)是周期为1的周期函数,在[0,1]上可导,且f(1)=0,记
证明:存在一点η∈(1,2),使得|f’(η)|≥2M。
选项
答案
由f(x)在[0,1]上可导,可知|f(x)|在[0,1]上连续,又由f(1)=f(0)=0,且M=max{|f(x)|}>0,知|f(x)|的最大值在(0,1)内取得,记|f(x
0
)|=M,x
0
∈(0,1),则在(0,x
0
)与(x
0
,1)内对f(x)应用拉格朗日中值定理,有f’(ξ
1
)x
0
=±M-0,f’(ξ
2
)(1-x
0
)-0±M,上面两式分别取绝对值后,相加,得2M=|f’(ξ
1
)x
0
|+|f’(ξ
2
)(1-x
0
)|,令|f’(ξ
0
)|=max{|f’(ξ
1
)|,|f’(ξ
2
)|},则ξ
0
∈(0,1),且|f’(ξ
0
)|≥2M,又由f(x)以1为周期,可知f’(x)也以1为周期。故存在一点η=1+ξ
0
∈(1,2),使得|f’(η)|≥2M。
解析
转载请注明原文地址:https://kaotiyun.com/show/szf4777K
0
考研数学二
相关试题推荐
曲线y=x(x一1)(2一x)与x轴所围成图形面积可表示为()
设α1,α2,…,αs均为n维向量,下列结论不正确的是
设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是()
两曲线与y=ax2+b在点处相切,则()
设曲线y=f(x)在[a,b]上连续,则曲线y=f(x),x=a,x=b及x轴所围成的图形的面积S=[].
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为()
设函数f(x,y)连续,则二次积分等于()
设f(x)在点x=0某一邻域内具有二阶连续导数,且绝对收敛.
设y=f(x)在[1,3]上单调,导函数连续,反函数为x=g(y),且f(1)=1,f(3)=2,∫13f(x)dx=,∫12g(y)dy=______。
(03年)设函数y=y(x)在(一∞.+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
随机试题
细菌的繁殖方式是________,病毒的繁殖方式是________。
关于双代号时标网络计划与横道计划特点的说法,正确的有()。
首选HMG-COA还原酶抑制药的疾病有
下列各项,构成企业留存收益的有()。
下列选项中,有关北京的历史说法正确的是()。
所谓客观真理,主要是指()。
罗马“3世纪危机”的根本原因是()。
(2012年真题)根据物权法规定,下列由建筑物区分所有权的业主共同决定的事项中,应当经专有部分占建筑物面积三分之二以上的业主且占总人数三分之二以上的业主同意的有()。
Thepairofwords"lend"and"borrow"are
Thereareonlytwowaystogatherinformationfromhumansubjectsaboutwhattheyarecurrentlydoing,thinking,orfeeling.On
最新回复
(
0
)