首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(ai1,ai2,…,aim)T(i=1,2,….r;r<n)是n维实向量,且α1,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,…,αR,β的线性相关性.
设αi=(ai1,ai2,…,aim)T(i=1,2,….r;r<n)是n维实向量,且α1,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,…,αR,β的线性相关性.
admin
2016-04-11
61
问题
设α
i
=(a
i1
,a
i2
,…,a
im
)
T
(i=1,2,….r;r<n)是n维实向量,且α
1
,…,α
r
线性无关.已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,…,α
R
,β的线性相关性.
选项
答案
线性无关,证明如下:由题设条件有β
T
α
i
=0(i=1,2,…,r).设k
1
α
1
+…+k
r
α
r
+k
n+1
β=0,两端左乘β
T
,并利用β
T
α
i
=0及β
T
β>0,得k
r+1
=0,→k
1
α
1
+…+k
r
α
r
=0,又α
1
,…,α
r
线性无关,→k
1
=…=k
r
=0,故α
1
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/t8w4777K
0
考研数学一
相关试题推荐
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求正交矩阵Q,使得QTA*Q=A。
设是正交矩阵,b>0,c>0求a,b,c的值;
设f(x)在(-∞,+∞)内可导,且f(0)≤0,证明:存在ξ1∈(-∞,0),ξ2∈(0,+∞),使得f(ξ1)=f(ξ2)=2020
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
已知f(x)为连续的偶函数,且=().
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设y=sinx,0≤x≤π/2,t为________时,右图中阴影部分的面积S1与S2之和S最小?
设f(x)=在(-∞,+∞)上连续,试确定常数a,b.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
某工厂产积木玩具,每生产一套积木玩具的可变成本为15元,每天的固定成本为2000元.如果每套积木玩具的出厂价为20元,为了不亏本,问该厂每天至少生产多少套这种积木玩具?
随机试题
朱某持一张载明金额为人民币50万元的承兑汇票,向票据所载明的付款人某银行提示付款。但该银行以持票人朱某拖欠银行贷款60万元尚未清偿为由拒绝付款,并以该汇票票面金额冲抵了部分届期贷款金额。对付款人(即某银行题)行为的定性,下列哪一选项是正确的?(2007年试
车行道纵坡个别路段可大于11%,但其长度不应超过下列何值?[2000年第22题]
电器灭火器选择时应遵循的原则是()。
根据《标准化法》,我国工程建设领域制定的行业标准,在相关技术要求公布了国家标准后,则()。
中间价
生产过程异常,但仍会有部分甚至大部分点子在控制界限以内,于是就犯了______,这种错误将造成______的损失。()
马克思根据人的发展状况把人类历史划分为依次更替的三种社会形态是
目前发现的我国境内最早的人类是( )。
LMartin清晰地区分了计算机的四类数据环境,第一类环境:文件;第二类环境:应用数据库;第三类环境:【】;第四类环境:信息检索系统。
A、Ittastedbitter.B、Ittastedgood.C、Itwasstrange.D、Itwassweet.B短文提到那个人将糖浆与苏打水掺和后喝味道很好,故选B。
最新回复
(
0
)