首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
admin
2019-05-14
70
问题
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
选项
答案
不妨设a≤b,由微分中值定理,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),使得 [*] 两式相减得f(a+b)-f(a)-f(b)=[f’(ξ
2
)-f’(ξ
1
)a. 因为f"(x)>0,所以f’(x)单调增加,而ξ
1
<ξ
2
,所以f’(ξ
1
)<f’(ξ
2
), 故f(a+b)-f(a)-f(b)=[f’(ξ
2
)-f’(ξ
1
)]a>0,即 f(a+b)>f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/tM04777K
0
考研数学一
相关试题推荐
设X~U(0,2),Y=X2,求Y的概率密度函数.
设f(x)连续,且对任意的x,y∈(一∞,+∞)有f(x+y)=f(x)+f(y)+2xy,f’(0)=1,求f(x).
计算I=被z=1和z=2截得部分的下侧.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:存在ξ∈(1,2),使得.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=f’(ξ).
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
当x∈[0,1]时,f’’(x)>0,则f’(0),f’(1),f(1)-f(0)的大小次序为().
曲线L:绕z轴旋转而成的曲面界于z=1与z=2之间的体积为__________.
设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L4:2x2+y2=2为四条逆时针方向的平面曲线,记Ii=dy(i=1,2,3,4),则max{I1,I2,I3,I4}=()
在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.
随机试题
患儿女性,1岁2个月,主因“间断发热皮疹伴反复口腔溃疡5个月余,双膝关节饱满10天”。查体:心率128次/min,呼吸25次/min,神志清楚,精神反应好,前囟大小0.2cm×0.2cm,张力不高。呼吸平稳。双肘关节伸面、足跟可见散在淡红色斑丘疹。双眼睑无
心理评估的常用方法,不包括
A.氨溴索B.乙酰半胱氨酸C.可待因D.苯丙哌林E.右美沙芬具有旋光性,药用其右旋体的是
账套备份文件只能经过()功能处理后,才能打开。
下列利息支出,可以在企业所得税税前全额扣除的是()。
朱熹在《朱子全书.论学》中写道:“宽着期限,紧着课程;小立课程,大作功夫”。这里的“课程”指的是()。
下列古都中哪个被称为是“六朝古都”?()
WhatisEinstein’sgreatestcontributiontohumanbeings?
Moreparentsarenowchoosingtohomeschoolinsteadofsendingtheirchildrentopublicorprivateschools.Butwhatishomescho
A、Bothglobalwarmingandbelow-averagerainfall.B、Bothbelow-averagerainfallandnaturalclimatevariability.C、Globalwarmin
最新回复
(
0
)