首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量p1=(﹣1,2,﹣1)T,p2=(0,﹣1,1)T是线性方程组Ax=0的两个解,(1)求矩阵A的特征值和特征向量;(2)求正交矩阵Q和对角形矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量p1=(﹣1,2,﹣1)T,p2=(0,﹣1,1)T是线性方程组Ax=0的两个解,(1)求矩阵A的特征值和特征向量;(2)求正交矩阵Q和对角形矩阵A,使得QTAQ=A.
admin
2020-06-05
42
问题
设3阶实对称矩阵A的各行元素之和均为3,向量p
1
=(﹣1,2,﹣1)
T
,p
2
=(0,﹣1,1)
T
是线性方程组Ax=0的两个解,(1)求矩阵A的特征值和特征向量;(2)求正交矩阵Q和对角形矩阵A,使得Q
T
AQ=A.
选项
答案
(1)因为p
1
,p
1
是线性方程组Ax=0的两个解,所以p
1
,p
2
是A的对应于特征值λ
1
=λ
2
=0的特征向量.又因为3阶实对称矩阵A的各行元素之和均为3,所以A有一个特征值λ
3
=3,其对应的特征向量p
3
=(1,1,1)
T
.故而矩阵A的特征值为λ
1
=λ
2
=0,λ
3
=3.同时λ
1
=λ
2
=0对应的特征向量为c
1
p
1
+c
2
p
2
(c
1
,c
2
不全为零);注意到矩阵A的各行元素之和均为3,故矩阵A的属于λ
3
=3的特征向量为c
3
p
3
=c
3
(1,1,1)
T
(c
3
≠0). (2)将p
1
,p
2
正交化得 β
1
=p
1
,β
2
=[*] 再将β
1
,β
2
,p
3
单位化,得 [*] 令 Q=(q
1
,q
2
,q
3
)=[*] 则 Q
T
AQ=[*]=diag(0,0,3)
解析
转载请注明原文地址:https://kaotiyun.com/show/tNv4777K
0
考研数学一
相关试题推荐
二次型f(x1,x2,x3)=(x1—x2)2+4x2x3的矩阵为___________.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B-2E)-1=_________。
设A是n阶矩阵,且A的行列式|A|=0,则A().
下列矩阵中不能相似对角化的是
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
n阶矩阵A和B具有相同的特征值是A和B相似的()
下列矩阵中,不能相似对角化的矩阵是()
随机试题
表面深红色或橙红色,晶面有金刚石样光泽,断面具树脂样光泽的药材为()。
根据建设工程职业健康安全事故的分类,一次事故中死亡8人属于()。
1.审证资料GUANGZHOUABCTRADINGCo.,LTD.NO.87HAIBINSTREET.GUANGZHOUCHINATel:0086-20-
纳税人销售应税消费品时,因按规定不得开具增值税专用发票而发生价款和增值税税款合并收取的的,则确定消费税计税依据的公式为( )。
下列关于肖像权的表述中,不正确的是()。
新课程理念对教师角色的定位是()
我国制造业当前存在的最大问题就是自主创新能力较差,这已成为影响我国经济发展和产业结构调整的重要制约因素。但是对传统制造业和加工工业来讲,在他们身上却印证了哈佛大学的那句名言:“企业不创新是要死的,但创新______死得更快”。填入横线上最恰当的一项
下面推理中()是正确的。
TherearefourmajortypesofbenchmarkingactivitiespursuedatXerox;internal,functional,generic,andcompetitive.Thethe
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessesmay
最新回复
(
0
)