首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
admin
2021-01-19
70
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX =0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
也都是Ax=0的解.已知Ax=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数x
1
,x
2
,x
3
,x
4
,使得 x
1
β
1
+x
2
β
2
+x
3
β
3
+x
4
β
4
=0 即 (x
1
+tx
4
)α
1
+(tx
1
+x
2
)α
2
+(tx
2
+x
3
)α
3
+(tx
3
+x
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 方程组(*)的系数行列式为 [*]=1+(一1)
1+4
t
4
=1一t
4
故当且仅当1一t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tR84777K
0
考研数学二
相关试题推荐
[*]
(2011年试题,三)已知函f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0y)dxdy=a其中D=|(x,y)|0≤x≤1,0≤y≤1},计算二重积分
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
计算积分
设三元线性方程组有通解求原方程组.
将积分f(x,y)dxdy化成极坐标形式,其中D为x2+y2=一8x所围成的区域.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
如果n阶矩阵A的秩r(A)≤1,(n>1),则A的特征值为0,0,…,0,tr(A).
随机试题
学习
不属于门体分流的方式是
下列哪项为助阳补火,治命门火衰要药
接地系统中,户外接地母线大部分采用埋地敷设,其连接采用搭接焊,搭接长度要求为()。
道路工程施工中,正确的路堤填筑方法有()。
企业现金收入应于当日送存银行,当日送存有困难的,由会计机构负责人确定送存时间。()
根据《证券公司监督管理条例》的规定,证券公司董事会秘书的职责包括()。Ⅰ.股东会会议的筹备Ⅱ.董事会会议的筹备Ⅲ.文件的保管Ⅳ.股东资料的管理
(2016·广西)教师的教学监控能力训练技术不包括()
我国现阶段发展老龄产业,不仅能够满足老年人群的特殊需要,还有利于形成新的消费热点,扩大内需,增加就业岗位,优化产业结构。同时能促进城乡协调发展和代际反馈,它将在应对人口老龄化和促进经济社会发展之间架起一座桥梁,达成双赢的局面。对本文主旨理解最准确的是:
Writeanessayabout400wordsentitled"Backgroundmusic".Inthefirstpartofyourwritingyoushouldpresentyourthesis
最新回复
(
0
)