首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
admin
2021-01-19
78
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX =0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
也都是Ax=0的解.已知Ax=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数x
1
,x
2
,x
3
,x
4
,使得 x
1
β
1
+x
2
β
2
+x
3
β
3
+x
4
β
4
=0 即 (x
1
+tx
4
)α
1
+(tx
1
+x
2
)α
2
+(tx
2
+x
3
)α
3
+(tx
3
+x
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 方程组(*)的系数行列式为 [*]=1+(一1)
1+4
t
4
=1一t
4
故当且仅当1一t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tR84777K
0
考研数学二
相关试题推荐
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。(注:m表
[*]
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
比较定积分的大小.
计算定积分
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
随机试题
李某,男性,40岁。晚饭饮少量酒并进食油腻食物,半夜突然上腹剧痛,以后蔓延到右下腹部;5小时后急诊。查体:体温37.6℃,上腹及右上腹部均有压痛,腹式呼吸尚存,肝浊音界存在,肠鸣音消失,腹透膈下有游离气体。该患者最可能的诊断为()
陈某是天津三石公司供销科长,任职期间办理了三石公司与上海三木公司之间的供销与加工等多方面的业务。1997年3月,陈某辞职后开办了六顺公司,六顺公司的办公房内存有三石公司一批设备。1997年4月1日,陈某对三木公司讲有一批设备委托三木公司以其名义销售,销售价
某一类高层商住楼地上30层、地下2层,总建筑面积85694.81m2。地下l层至地上4层为商场,建筑面积37275.01m2,地上4层以上为普通住宅,地下2层为汽车库。该商住楼内的防烟楼梯间及其前室、消防电梯间前室和合用前室,靠外墙布置具备自
为了提高现金使用效率,企业应当()。
已知一内直径为50cm,内高100cm的圆柱形木桶,灌满了浓度为20%的盐水溶液,使其倾斜45度倒出部分溶液后放平,再加满清水。问此时木桶内盐水溶液的浓度是多少?
社会主义国家公安机关与剥削阶级国家警察机关在专政的目的上是相同的。()
写出从哈希表中删除关键字为K的一个记录的算法。设哈希函数为H,解决冲突的方法为链地址法。
《旧约》是古代希伯来文学的总集,全书共有_______。
已知英文字母m的ASCII码值为6DH,那么ASCII码值为70H的英文字母是_________。
Anethicscrisisatoneoftheworld’smostsuccessfulhumanembryonicstemcelllaboratorieshasplungedthecontroversialfiel
最新回复
(
0
)