首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
admin
2021-01-19
96
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX =0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
也都是Ax=0的解.已知Ax=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数x
1
,x
2
,x
3
,x
4
,使得 x
1
β
1
+x
2
β
2
+x
3
β
3
+x
4
β
4
=0 即 (x
1
+tx
4
)α
1
+(tx
1
+x
2
)α
2
+(tx
2
+x
3
)α
3
+(tx
3
+x
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 方程组(*)的系数行列式为 [*]=1+(一1)
1+4
t
4
=1一t
4
故当且仅当1一t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tR84777K
0
考研数学二
相关试题推荐
[*]
[*]
(03)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使Pr-1AP=Λ.
(11年)设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
[2013年]设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f′(∈)=1;
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
已知二次型f=2x12+3x22+3x32+2ax2x3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
计算定积分
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
随机试题
Allovertheworld,forestsaresafeguardingthehealthoftheplanetitself.Theydothis【C1】______protectingthesoil,providi
患者,女,23岁。一次与人发生口角,对方声音洪亮,患者自感不是对手。第二天起出现无法说话,与之交谈只能用手势表示。能正常咳嗽,经耳鼻喉科检查正常。该患者的表现是
下列有关传染性软疣的叙述哪项是不正确的
属于口腔癌一级预防的是
患者,女性,20岁,患者右下第一磨牙龋洞深,探底中硬不敏感,热测引起迟缓痛,刺激去除后疼痛持续时间长,其原因是
无烟煤煤气发生炉,以焦作煤作气化燃料,每小时耗煤G=1249kg,焦作煤每千克空气耗热量C=2.3m3/kg,漏损系数f=1.1,一般情况下空气的温度取t=20℃,空气的绝对压力B=101325Pa,空气的含湿量d可忽略不计,则空气鼓风机的实际使
抹灰时待灰饼稍干后在上下灰饼之间用砂浆抹上一条宽10cm左右的垂直灰埂,此即为(),作为抹灰厚度和赶平的标准。
下列各项中,符合会计要素中“收入”定义的是()。
下列采购活动中,适用《政府采购法》调整的是()。
下列关于Windows2003系统下WWW服务器的描述中,正确的是()。
最新回复
(
0
)