首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX =0的一个基础解系.
admin
2021-01-19
65
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX =0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
也都是Ax=0的解.已知Ax=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Ax=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数x
1
,x
2
,x
3
,x
4
,使得 x
1
β
1
+x
2
β
2
+x
3
β
3
+x
4
β
4
=0 即 (x
1
+tx
4
)α
1
+(tx
1
+x
2
)α
2
+(tx
2
+x
3
)α
3
+(tx
3
+x
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 方程组(*)的系数行列式为 [*]=1+(一1)
1+4
t
4
=1一t
4
故当且仅当1一t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/tR84777K
0
考研数学二
相关试题推荐
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
(92年)设函数y=y(x)由方程y—xey=1所确定,求的值.
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设三元线性方程组有通解求原方程组.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
将积分f(x,y)dxdy化成极坐标形式,其中D为x2+y2=一8x所围成的区域.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
估计下列积分值:
随机试题
滑动轴承的摩擦状态大多数情况下处于()。
都是联绵词的一组是()
A.alotofmoneyB.expresspublicfeelingonlocalissuesC.morningD.localpeopleE.nationalissuesF.localissuesMany
冠状动脉CTA在临床应用广泛,关于冠状动脉CTA。冠状动脉CTA的适应证错误的是
商业银行贷给同一借款人的贷款金额不得超过银行资本金额的( )。
基金托管人应当履行的职责包括()等。
在收容教养期间,对被收容教养的未成年人实行( )方针。
根据所给材料,回答下面问题
建设生态文明,必须保护生态环境。保护生态环境的根本之策是
Inthepastdecade,newscientificdevelopmentsincommunicationshavechangedthewaymanypeoplegatherinformationaboutpoli
最新回复
(
0
)