首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
admin
2018-11-11
91
问题
已知齐次线性方程组(I)为
齐次线性方程组(Ⅱ)的基础解系为
求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
选项
答案
由上题解得方程组(I)的基础解系η
1
,η
2
.于是,方程组(I)的通解为 k
1
η
1
+k
2
η
2
=k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
(k
1
,k
2
为任意常数). 由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为 ι
1
ξ
1
+ι
2
ξ
2
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
(ι
1
,ι
2
为任意常数). 为求方程组(I)与(Ⅱ)的公共解,令它们的通解相等,即 k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
. 从而得到关于k
1
,k
2
,ι
1
,ι
2
的方程组 [*] 对此方程组的系数矩阵作初等行变换,得 [*] 由此可得,k
1
=k
2
=ι
2
,ι
1
=0.所以,令k
1
=k
2
=k,方程组(I),(Ⅱ)的非零公共解是 k[2,一1,1,0]
T
+k[一1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数). 并且方程组(I),(Ⅱ)的非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示为k(η
i
+η
2
)和kξ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tRj4777K
0
考研数学二
相关试题推荐
设X的概率密度为f(x)=,一∞<x<+∞,(1)求E(X)和D(X);(2)求X与|X|的协方差,判断X与|X|是否不相关;(3)判断X与|X|是否相互独立.
设随机变量X1,X2均在(0,1)上服从均匀分布,且相互独立,X=max(X1,X2),Y=min(X1,X2),求E(X),E(Y),D(X),D(Y),E(X+Y).
计算其中L为球面x2+y2+z2=R2与平面x+y+z=0的交线.
设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,求
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)gf(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()
(2004年)曲线y=与直线χ=0,χ-t(t>0)及y=0围成一曲边梯形.该曲边梯形绕χ轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在χ=t处的底面积为F(t).(Ⅰ)求的值;(Ⅱ)计算极限
求函数y=(χ∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
随机试题
有意义学习的特征不包括()。
用财务核算法估算自创无形资产的重置成本时,一般是按()来计算材料、工时的消耗。
患儿,男,7岁。dmft多于10个,第一恒磨牙萌出2/3,窝沟深,近中点隙卡探针。对此较好的方法是
甲与乙系朋友关系。某日甲外出,将自己的一台照相机交给乙保管。乙未经甲同意将照相机卖给不知情的丙,对此表述正确的是()。
下列情况中,应采用设贮水池、水泵的给水方式的是()。
关于施工质量控制图的说法,正确的是()。
汇总记账凭证账务处理程序的优点有()。
下列关于不同理财价值观的理财特点及投资建议的说法,正确的有( )。
汶川地震后,某公司在企业捐款的同时,还组织职工进行捐款,则该企业及其职工可以享受的优惠是()。
Whetheryou’relookingforaquietplaceoraholidaytrip,Florida’snaturalbeautyandvarioustouristactivitiesletyoumake
最新回复
(
0
)