首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
admin
2018-11-11
54
问题
已知齐次线性方程组(I)为
齐次线性方程组(Ⅱ)的基础解系为
求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
选项
答案
由上题解得方程组(I)的基础解系η
1
,η
2
.于是,方程组(I)的通解为 k
1
η
1
+k
2
η
2
=k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
(k
1
,k
2
为任意常数). 由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为 ι
1
ξ
1
+ι
2
ξ
2
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
(ι
1
,ι
2
为任意常数). 为求方程组(I)与(Ⅱ)的公共解,令它们的通解相等,即 k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
. 从而得到关于k
1
,k
2
,ι
1
,ι
2
的方程组 [*] 对此方程组的系数矩阵作初等行变换,得 [*] 由此可得,k
1
=k
2
=ι
2
,ι
1
=0.所以,令k
1
=k
2
=k,方程组(I),(Ⅱ)的非零公共解是 k[2,一1,1,0]
T
+k[一1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数). 并且方程组(I),(Ⅱ)的非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示为k(η
i
+η
2
)和kξ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tRj4777K
0
考研数学二
相关试题推荐
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X:0无实根的概率为,则μ=__________。
计算,其中L是由曲线x2+y2=2y,x2+y2=4y,所围成的区域的边界,按顺时针方向.
计算其中L为球面x2+y2+z2=R2与平面x+y+z=0的交线.
设φ(x)是方程y"+y=0的满足条件y(0)=0,y’(0)=1的解,证明方程y”+y=f(x)满足条件y(0)=y’(0)=0的解为y=∫0xφ(t)f(x-t)dt.
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
求极限.
计算(a>0),其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
简述质量控制制度的目的和要素。
紫草具有而水牛角不具有的功效是
先砌砌体与后砌砌体之间的接合应尽量留斜槎,斜槎长度不应小于高度的()。
市区主要路段旁,工地四周设置的封闭围挡高度不得低于()m。
进出口货物报关都要经历申报、配合查验、缴纳税款或免纳监管手续费、提取或者装运货物等基本环节。()
股份有限公司的董事会开会时,董事因故不能出席的,可以书面委托他人代为出席。()
千头万绪这个词,有一种沸沸扬扬的和缠人喉咙的窒息感,让人心境沮丧,(),好像一个泥潭,不留神陷进去,会被它淹了口鼻,呛得翻白,甚或丢了性命,也说不得。
主机与I/O设备传送数据时,CPU效率最低的是()。
如果有两个事务,同时对数据库中同一数据进行操作,不会引起冲突的操作是
A、Theymightbeinfluencedbymothers’mood.B、Theycouldlearnassoonastheywereborn.C、Theycouldunderstandwhatpeoples
最新回复
(
0
)