首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为 求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
admin
2018-11-11
104
问题
已知齐次线性方程组(I)为
齐次线性方程组(Ⅱ)的基础解系为
求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示.
选项
答案
由上题解得方程组(I)的基础解系η
1
,η
2
.于是,方程组(I)的通解为 k
1
η
1
+k
2
η
2
=k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
(k
1
,k
2
为任意常数). 由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为 ι
1
ξ
1
+ι
2
ξ
2
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
(ι
1
,ι
2
为任意常数). 为求方程组(I)与(Ⅱ)的公共解,令它们的通解相等,即 k
1
[2,一1,1,0]
T
+k
2
[一1,1,0,1]
T
=ι
1
[一1,1,2,4]
T
+ι
2
[1,0,1,1]
T
. 从而得到关于k
1
,k
2
,ι
1
,ι
2
的方程组 [*] 对此方程组的系数矩阵作初等行变换,得 [*] 由此可得,k
1
=k
2
=ι
2
,ι
1
=0.所以,令k
1
=k
2
=k,方程组(I),(Ⅱ)的非零公共解是 k[2,一1,1,0]
T
+k[一1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数). 并且方程组(I),(Ⅱ)的非零公共解分别由方程组(I),(Ⅱ)的基础解系线性表示为k(η
i
+η
2
)和kξ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/tRj4777K
0
考研数学二
相关试题推荐
求
设随机变量X服从N(μ1,σ12),Y服从N(μ2,σ22),且P{|X-μ1|<1)>P{|X-μ2|<1),则()
计算其中L是双纽线(x2+y2)2=a(x2一y2)(a>0).
设函数φ(x)=∫0sinxf(tx2)dt,其中f(x)是连续函数,且f(0)=2,求φ’(x).
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
设3阶方阵A的特征值为λ1=2,λ2=一2,λ3=1;对应的特征向量依次为求A.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
随机试题
什么叫做焊接结构的疲劳断裂?疲劳断裂主要有哪几种形式?
胎头下降停滞,是指活跃晚期胎头停留在原处不下降达
22岁男性,胸痛,同时伴发热,气急,心界明显扩大,心尖搏动位于心浊音界左缘内侧约2cm,肝肋下5cm,心电图示窦性心动过速,低电压,最可能的诊断是
A.面部肌肉紧张,痉挛,角弓反张,惊厥B.四肢抽搐,牙关紧闭,心律失常C.大汗,头昏目眩,口唇黏膜糜烂,脱发D.吐血,咯血,便血,尿血,黄疸E.口腔黏膜充血,牙齿肿胀溃疡,少尿过量服用含马钱子的中成药会引起()。
A.氯苯那敏B.泼尼松C.维生素CD.阿司匹林E.抗病毒药从事驾驶、高空作业等工作者不宜服用()。
代理经营进口药品的单位或办事处,对所代理经营的进口药品制剂的不良反应,要
美国宇航局利用一枚火箭在月球表面撞出直径大约100英尺的大洞,科学家通过测量,发现了大约25加仑水蒸气以及水冰。这一发现被美国《时代》周刊评选为2009年十大科学发现之一。这说明()。
It’s2:30pmandI’mprocrastinating.Theprojectis【C1】______by5o’clockandIcan’tseemtofindthe【C2】______togetitdone.
要使图像框(Image)中的图像能随着图像框的大小伸缩,应该设置的属性及值是()。
Thereisnoquestionofsuccess.Theunderlinedwordmeans______.
最新回复
(
0
)