首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值是λ1=8,λ2=λ3=2,矩阵A属于特征值λ1的特征向量是ξ1=(1,k,1)T,属于特征值λ2=λ3的一个特征向量是ξ2=(-1,1,0)T. (Ⅰ)求参数k及A的属于特征值λ2=λ3的另一个特征向量; (Ⅱ)
设3阶实对称矩阵A的特征值是λ1=8,λ2=λ3=2,矩阵A属于特征值λ1的特征向量是ξ1=(1,k,1)T,属于特征值λ2=λ3的一个特征向量是ξ2=(-1,1,0)T. (Ⅰ)求参数k及A的属于特征值λ2=λ3的另一个特征向量; (Ⅱ)
admin
2018-06-12
66
问题
设3阶实对称矩阵A的特征值是λ
1
=8,λ
2
=λ
3
=2,矩阵A属于特征值λ
1
的特征向量是ξ
1
=(1,k,1)
T
,属于特征值λ
2
=λ
3
的一个特征向量是ξ
2
=(-1,1,0)
T
.
(Ⅰ)求参数k及A的属于特征值λ
2
=λ
3
的另一个特征向量;
(Ⅱ)求矩阵A.
选项
答案
(Ⅰ)因为A是实对称矩阵,属于不同特征值的特征向量相互正交.ξ
1
,ξ
2
是A的分别属于特征值λ
1
,λ
2
=λ
3
的特征向量,故有ξ
1
T
ξ
2
=0,即 -1+k+0=0. 解得k=1,从而,ξ
1
=(1,1,1)
T
. 设矩阵A的属于特征值λ
2
=λ
3
的另一个特征向量为ξ
3
=(χ
1
,χ
2
,χ
3
)
T
.由于ξ
1
,ξ
3
是A的属于不同特征值的特征向量,故有ξ
1
T
ξ
3
=0.为使属于同一特征值λ
2
=λ
3
的2个特征向量线性无关,进一步设ξ
2
T
ξ
3
0.于是有齐次线性方程组 [*] 解得方程组的基础解系为(1,1,-2)
T
.所以,矩阵A的属于λ
2
=λ
3
=2的另一个特征向量ξ
3
=(1,1,-2)
T
. (Ⅱ)建立关于A的矩阵方程: [*] 用初等变换法求A: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tTg4777K
0
考研数学一
相关试题推荐
已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA-1=BA-1+3E,求B.
若向量组α1=(1,-1,2,4)T,α2=(0,3,1,2)T,α3=(3,0,7,0)T,α4=(1,-2,2,0)T线性无关,则未知数a的取值范围是_______.
设χ1,χ2,…,χn是来自总体X的简单随机样本,X的概率密度为f(χ)=,其中λ>0,a>0为已知参数.记Y=.(Ⅰ)求λ的矩估计量和最大似然估计量;(Ⅱ)求Y的数学期望EY的最大似然估计量
设f(χ)在(-∞,+∞)内二阶可导且f〞(χ)>0,则χ>0,h1>0,h2>0,有
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
两个无穷小比较的结果是()
设f(x)=分别判断级数的敛散性.
设总体X的分布列为截尾几何分布P{X=l}=θk-1(1-θ),k=1,2,…,r,P{X=r+1}=θr,从中抽得样本X1,X2,…,Xn,其中有m个取值为r+1,求θ的极大似然估计.
讨论方程axex+b=0(a>0)实根的情况.
幂级数的收敛半径为___________.
随机试题
边际贡献率的确定公式可表示为
川崎病的发病年龄以
以下不是咯血诱发因素的是()
A.静脉性充血B.肺动脉栓塞C.心肌梗死D.血栓形成E.出血股静脉血栓脱落可引起
A.高血压病1级B.高血压病2级C.高血压病3级D.高血压危象E.高血压脑病血压持续在21.3/12.6kPa(160/95mmHg)以上,眼底动脉普遍狭窄,属于()。
【2009—3】题24~25:某厂根据负荷发展需要,拟新建一座110/10kV变电站,用于厂区内10kV负荷的供电,变电所基本情况如下:(1)电源取自地区110kV电网(无限大电源容量)。(2)主变采用两台容量为31.5MVA三相双绕组自冷有载调压变电
在城市规划工作中,科学、系统的调查,其作用是:
材料应进行严格的质量控制,凡涉及工程安全及使用功能的有关材料应经()检查认可。
耗氧量最大的是()。
Whydowelaugh?Foryearsscientistshaveaskedthemselvesthisquestion.Nootheranimalslaughandsmile--onlyhumanbeings,
最新回复
(
0
)