首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有( )
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有( )
admin
2021-02-25
38
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ)Ax=0和(Ⅱ)A
T
Ax=0,必有( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
A
解析
本题考查齐次线性方程组解的概念及相关理论.
显然(Ⅰ)的解是(Ⅱ)的解,设x
0
是(Ⅱ)的解,则有A
T
Ax
0
=0,在该式两边左乘x
T
0
,得x
T
0
A
T
Ax
0
=0,即(Ax
0
)
T
Ax
0
=0,从而||Ax
0
||=0,于是Ax
0
=0,即(Ⅱ)的解是(Ⅰ)的解.故选A.
转载请注明原文地址:https://kaotiyun.com/show/tY84777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1,+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
计算χy(χ+y)dσ,其中D是由χ2-y2=1及y=0,y=1围成的平面区域.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
证明
求常数m,n,使得
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
随机试题
中国家族伦理的核心是()
女性,38岁,活动后心悸,气促,呼吸困难,乏力3个月入院。查体:血压100/85mmHg,半坐卧位,心界不大,心尖搏动不明显,心率110次/分,可闻心包叩击音,双肺呼吸音粗,无干湿性啰音,颈静脉怒张,肝肋下3cm,肝颈阳性,腹水征(+++),双下肢水肿(+
牧羊犬,雄性,5岁。左后肢外伤12小时,伤口有分泌物,骨折断端外露,小腿成角畸形,正确的处理方法是
太冲的主治病证不包括
编制全国主体功能区规划需要妥善处理的关系包括()。
矩阵制的组织形式有()的缺点。
采取差别化战略的途径有()。
为缓解人口老龄化引发的社会问题和矛盾,在坚持计划生育基本国策的前提下,从2014年开始,全国各地相继启动每对夫妇生育两个孩子的政策。()
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
WhatisthewomandoinginBeijing?
最新回复
(
0
)