首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明: 若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明: 若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.
admin
2017-06-14
40
问题
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明:
若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.
选项
答案
由上一题知,α,Bα是A对应于同-特征值的特征向量,又由于A有n个不同的特征值,故对应于同-特征值的特征向量线性相关,所以α,Bα线性相关,又α,Bα均为非零向量,所以存在常数k,使Bα=kα,所以α是B的对应于特征值k的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/tpu4777K
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
A.肉眼血尿消失B.镜下血尿消失C.浮肿消失、血压正常D.艾迪斯计数正常E.血沉正常急性肾炎患儿可以上学的标准是
民法上的非票据关系包括()。
火药燃烧的特性有()
铺设水泥混凝土楼地面面层时,不正确的做法是()。
()是指由于流动性的不确定变化而使金融机构遭受损失的可能性。
A注册会计师负责审计甲公司2011年度财务报表。在确定拟实施的实质性程序时,A注册会计师遇到下列事项,请代为做出正确的专业判断。A注册会计师通过对甲公司及其环境的了解,获悉甲公司的产能严重过剩并出现连续数年的亏损,管理层按照固定资产的未来现金流量的现值
下列关于无形资产的会计处理的表述中,正确的是()。
有n个顶点的无向连通图至少有_________条边。
2014年12月份,我国房地产业土地购置面积4062万平方米,同比增长6.5%,土地成交价款:1000亿元,同比增长8.9%。关于2014年1-2月房地产开发和销售情况,能够从上述资料中推出的是:
求I=χ[1+yf(χ2+y2)]dχdy,D由y=χ3,y=1,χ=-1围成,f是连续函数.
最新回复
(
0
)