首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T, 求矩阵A;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T, 求矩阵A;
admin
2014-02-06
112
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η
1
=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,又知齐次方程组Bx=0的基础解系是β
1
=(1,1,2,1)
T
,β
2
=(0,一3,1,a)
T
,
求矩阵A;
选项
答案
记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
X=0的解.对CT作初等行变换,有[*]得到C
T
x=0基础解系为α
1
=(3,一1,1,0)
T
,α
2
=(一5,1,0,1)
T
.所以矩阵[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tt54777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及,其中E为3阶单位矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33.求可逆矩阵P,使得P-1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33.求矩阵A的特征值;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
求下列微分方程满足初始条件的特解:
求下列不定积分:
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1),线段AB绕z轴旋转一周所成的旋转曲面为S,求由S及平面z=0,z=1所围成的立体体积.
已知3阶矩阵A满足∣A-E∣=∣A-2E∣=∣A+E∣=a,其中E为3阶单位矩阵.当a=2时,求行列式∣A+3E∣的值.
设函数y=y(x)由参数方程确定,求曲线y=y(x)为凹时,x的取值范围。
设则f(x)在点x=0处
随机试题
(2009年4月)德国古典哲学是马克思主义哲学的直接理论来源。马克思恩格斯批判地吸取了黑格尔哲学的_______。
5岁患儿,8月15日开始发热,伴头痛、恶心、呕吐一次,次日稀便三次,精神不振,抽搐一次。体检:急性热病容,嗜睡状,颈强(+),克氏征(++),血常规检查:WBC15.0×109/L,脑脊液为无色透明,白细胞数100×106/L,中性80%。该患者最可能
下列不属于生产环境职业有害因素控制措施的是()
关于硫酸阿托品中的莨菪碱的检查,使用的方法是
在对汇率风险进行管理时,选择有利的合同货币应遵循的原则包括()。
下列哪种分步法不需进行成本还原()。
下列有关独立性的陈述中,不恰当的是()。
水的生理功能有哪些?
形而上学唯物主义的主要局限有()。
Howmanyparachutistswerekilledinthecrash?
最新回复
(
0
)