首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,α3线性无关,若β1,β2,β3可用α1,α2,α3线性表示,设(β1,β2,β3)=(α1,α2,α3)C,证明:β1,β2,β3线性无关的充分必要条件是|C|≠0.
已知n维向量α1,α2,α3线性无关,若β1,β2,β3可用α1,α2,α3线性表示,设(β1,β2,β3)=(α1,α2,α3)C,证明:β1,β2,β3线性无关的充分必要条件是|C|≠0.
admin
2020-06-05
38
问题
已知n维向量α
1
,α
2
,α
3
线性无关,若β
1
,β
2
,β
3
可用α
1
,α
2
,α
3
线性表示,设(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)C,证明:β
1
,β
2
,β
3
线性无关的充分必要条件是|C|≠0.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
). 必要性. 若β
1
,β
2
,β
3
线性无关,则秩R(B)=R(β
1
,β
2
,β
3
)=3.又R(B)=R(AC)≤R(C)≤3,因此,R(C)=3,即矩阵C可逆,|C|≠0. 充分性. 若|C|≠0,即矩阵C可逆,那么R(B)=R(AC)=R(A)=R(α
1
,α
2
,α
3
)=3,所以β
1
,β
2
,β
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/u8v4777K
0
考研数学一
相关试题推荐
设A,B是n阶矩阵,则C=的伴随矩阵是
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设n阶方阵A的秩为r,且r<n,则在A的n个行向量中
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
随机试题
下列属于道教经典的是【】
A.单纯型中度糜烂B.颗粒型中度糜烂C.乳突型重度糜烂D.乳突型中度糜烂E.颗粒型重度糜烂女性,33岁。白带多,呈淡黄色,脓性,时有性交后出血,感腰骶部酸痛。妇科检查:宫颈肥大,充血,糜烂面呈颗粒状,占宫颈面积大于2/3,其诊断为
某男性,40岁,寒战、弛张型高热半个月,伴有肝区痛,肝左叶肿大,压痛明显,病人有明显的黄疸,白细胞18×109/L,AFP阴性。超声波检查:左肝区4cm液性暗区,腹腔内有少量的腹腔积液。胆囊内有1.0cm×2.0cm结石,胆囊大,壁厚。本病最可能的诊断是
牙周基础治疗后,牙龈肥大增生仍未消退,适用的手术治疗方法为
图为某市25万人口的城市主城区总体规划示意图。该市的东、南有高速公路和铁路,设有客货兼营火车站一座,西边为一湖泊,东南方向离某特大城市约70km,西北方向离某地级市约50km。该市确定以发展无污染工业和旅游度假服务为主导的综合性城市。规划以
什么是邀请招标?其特点是什么?
下列属于导游服务范围的是()。
1.2017年5月12日。W集团董事长王先生发表题为《努力践行文化自信》的主旨演讲,以下是内容节选:W集团长期坚持对员工进行中国优秀传统文化教育,逐步建立员工对中国文化的自信。我们是全国第一家集体学习《论语》的企业,2005年我就推荐员工读《论语
“什么叫社会主义,什么叫马克思主义?我们过去对这个问题认识不是完全清醒的。”这种不清醒的突出表现是()
下列运算符中,()运算符在C++中不能重载。
最新回复
(
0
)