首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
admin
2016-10-13
54
问题
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
选项
答案
由泰勒公式得 [*] 两式相减得f"’(ξ
1
)+f"’(ξ
2
)=6. 因为f(x)在[一1,1]上三阶连续可导,所以f"’(z)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f"’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f"’(ξ
1
)+f"’(ξ
2
)≤2M, 即m≤3≤M. 由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](一1,1),使得f"’(ξ)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/uBu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
[*]
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
(2009年试题,一)如图1一6—2,正方形{(x,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),则().
微分方程X2y"+3xy’+y=0有极值y(1)=2的特解y(x),则y(x)=______.
设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程.
细菌的增长率与总数成正比如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
随机试题
简述小学生道德感发展的特点。
在LPC量表评价中,高LPC得分的人是以下哪一方面为导向的领导?()
2岁小儿,生后未接种卡介苗,PPD试验硬结直径20mm,正确的诊断为
A.腔道给药B.黏膜给药C.注射给药D.皮肤给药E.呼吸道给药舌下片剂的给药途径属于()
简述科学技术与教育的相互关系。
据新华社2021年9月8日报道,近日,中央纪委国家监委会同多单位联合印发《关于进一步推进()的意见》。
PlayingorganizedsportsissuchacommonexperienceintheUnitedStatesthatmanychildrenandteenagerstakethemforgranted
循环队列的存储空间为Q(1:40),初始状态为front=rear=40。经过一系列正常的入队与退队操作后,front=rear=15,此后又退出一个元素,则循环队列中的元素个数为()。
A、Inatravelagency.B、Inabank.C、Inahotel.D、Inashop.A男士说想看一下宣传册,他正在考虑出去旅游,女士回答说这里有,并询问男士想要去哪里。由此可见,女士是在旅行社工作。brochure意
Smallcommunities,withtheirdistinctivecharacter—wherelifeisstableandintenselyhuman—aredisappearing.Somehave【C1】____
最新回复
(
0
)