首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2014-11-26
51
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(Ⅰ)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即A=[*] 于是[*] 显然α,β都不是零向量且A=αβ
T
. 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1.又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0.令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
一kλ)X=0,注意到x≠0,所以矩阵A的特征值为λ=0或λ=k.因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(OE—A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vl54777K
0
考研数学一
相关试题推荐
设α,β为n维非零列向量,且线性相关,αTα=2,若(αβT)2=2βαT,具体给出两向量间的线性关系.
证明向量组α,β,α+β与α,β等价.
已知n维列向量组α1,α2,…,αs线性无关,则列向量组α’1,α’2,…,α’s可能线性相关的是().
设线性方程组求出方程组的全部解.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n-1,则线性方程组Ax=0的通解是________.
求一个以y1=tet,y2=sin2t为两个特解的四阶常系数齐次线性微分方程,并求其通解.
设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.
位于上半平面且图形凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与及(1+y’2)的乘积成正比,求该曲线方程.
平面曲线绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求已知Y=y时X的条件密度函数;
随机试题
每个磁铁都有一对磁极,它们是()。
防火墙可以限制暴露用户点。()
患者,男,6岁,血清中抗-HBs、抗-HBe、抗-HBc阳性,其他乙型肝炎血清学指标阴性时。应考虑属于
有关伤口换药的叙述哪些正确
图示结构支座a发生侧移△,剪力图正确的是:
某项目设计生产能力8000台,每台销售价格为300元,单件产品变动成本150元,年固定成本32万元,每台产销售税金50元,则该项目的产量盈亏平衡点为( )台。
估计坏账损失的方法有()。
根据营业税的规定,下列属于营业税纳税人的有()。
人的心理过程包括________过程、情绪情感过程和意志过程。
在当今中国,爱国主义首先体现在
最新回复
(
0
)