首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2014-11-26
44
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(Ⅰ)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即A=[*] 于是[*] 显然α,β都不是零向量且A=αβ
T
. 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(α)=1.又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0.令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
一kλ)X=0,注意到x≠0,所以矩阵A的特征值为λ=0或λ=k.因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(OE—A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vl54777K
0
考研数学一
相关试题推荐
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=、[a1,a2,a3,a4],a1,a2,a3,a4均为4维列向量,其中a1,a2线性无关,若β=a1+2a2-a3=a1+a2+a3+a4=a1+3a2+a3+2a4,则Ax=β的通解为________.
设证明当k>2时,Ak0的充分必要条件为A2=0.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组求方程组(*)的通解;
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
求内接于椭球面的长方体的最大体积.
求一条凹曲线,已知其上任意一点处的曲率k=,其中α为该曲线在相应点处的切线的倾斜角,且该曲线在点(1,1)处的切线为水平方向.
已知y=f(x)是微分方程xy’一y=满足初值条件f(1)=0的特解.则∫01f(x)dx=________.
设z=f(e2t,sin2t),其中f二阶连续可偏导,则d2z/dt2=________.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Xi
随机试题
膀胱肿瘤或结核的好发部位是【】
王某,男性,42岁。肺痈后期见脓痰渐少,午后潮热,五心烦热,口燥咽干,盗汗自汗,气短乏力,形体消瘦,舌瘦红,脉虚数。此为肺痈的
胎头衔接是指胎头
《韦克斯勒量表》、《斯坦福—比纳量表》是()量表。
①透过中华文化发展史,不难发现,中华文化在几千年的演进过程中,虽历经劫难,但每次都能发扬光大、传承至今②根据英国著名学者汤因比的著述,人类文明史上曾经存在26个文明形态③可见,中华民族传统文化历久弥新的关键就在于其中蕴含着能够保持旺盛生命力的最根本
甲被控故意杀人罪,下列关于证据的说法错误的是()。
1,-1,2,-2
回答下列问题若X~B(n,p),求X取值为偶数时的概率P{X为偶数}.
Telnet提供的服务是______。
ManyoftheworkerswhoservedattheWorldTradeCenteraftertheSeptembereleventhattacksbecamesick.Theybreathedaharmf
最新回复
(
0
)