首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数Y=f(x)在(0,+∞)内有界且可导,则
设函数Y=f(x)在(0,+∞)内有界且可导,则
admin
2014-05-19
75
问题
设函数Y=f(x)在(0,+∞)内有界且可导,则
选项
A、当
时,必有
.
B、当
存在时,必有
.
C、当
时,必有
.
D、当
存在时,必有
.
答案
B
解析
[分析] 本题考查函数的有界性与函数的极限、导函数的极限之间的关系,可通过举反例用排除法找到答案,也可用中值定理直接证明.
[详解1] 设
,所以f(x)在(0,+∞)内
有界,由于
可见f(x)在(0,+∞)内可导.但
不存在,
,排除(A),(D).
又设f(x)=sinx,则f(x)在(0,+∞)内有界且可导,
,进一步排除(C).故应选(B).
[详解2] 直接证明(B)正确.用反证法,由题设
存在,设
,不妨设A>0,则对于
存在x>0,当x>X时,有
即
,可见
.在区间[X,x]上应用拉格朗日中值定理,有
f(x)=f(X)+f’(ξ)(x-X)>f(X)+
,
于是
,与题设f(x)存(0,+∞)上有界矛盾,故
.
转载请注明原文地址:https://kaotiyun.com/show/uP34777K
0
考研数学二
相关试题推荐
[2005年]设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=__________,b=___________.
求矩阵的实特征值及对应的特征向量.
(16年)已知矩阵A=(Ⅰ)求A99;(Ⅱ)设3阶矩阵B=(α1,α2,α3)满足B2=BA,记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.
设F(u,v)一阶连续可偏导,且由F(x/z,y/z)=0确定z为x,y的隐函数,则=________。
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1-α2,Aα3=α1-α2+4α3,(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵Q,使得Q-1AQ为对角矩阵。
设A=,B为三阶非零矩阵,α1=,α2=,α3=为BX=0的解向量,且AX=α3有解。(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解。
微分方程y"+y′=e-x在初始条件y(0)=1,y′(0)=一1下的特解是().
(2003年试题,十一)若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(2010年试题,8)设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
随机试题
要求焊后热处理的压力容器,应在热处理后焊接返修。()
男性,60岁,低热、肝区胀痛2月余并消瘦,近3周发现尿黄、巩膜黄染。18年前发现HB-sAg阳性,8年前被诊断为肝硬化。如果查体时肝脏肿大,质地硬,肝区闻及血管杂音,该病人最可能的诊断是
我国标准规定加速器E射线穿透性的稳定性的检定周期为
4~8岁先天性髋关节脱位患儿,髋关节的病理变化有
一周岁女孩,生后牛奶喂养,4个月前因迁延性腹泻改为米粉喂养。食欲差来诊,体检:体重6.4kg,心肺听诊无异常,腹软,腹壁脂肪0.3cm,肌肉松弛,无脱水征。最可能的诊断是
分段围堰导流法包括束窄河床导流和()。
学校的主要工作是()。
有限责任公司设监事会,其成员不得少于(),股东人数较少或规模较小的有限责任公司可不设监事会。
与下述ER图等价的UML类图是()。
Eventoday,(through)the(hustleandbustle)ofNevskyProspect,St.Petersburg’smainstreet,the(classical)beautyoftheci
最新回复
(
0
)