首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)与φ(x,y)均为可微函数,且(φy’,(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
设f(x,y)与φ(x,y)均为可微函数,且(φy’,(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
admin
2013-07-30
97
问题
设f(x,y)与φ(x,y)均为可微函数,且(φ
y
’
,(x,y)≠0,已知(x
0
,y
0
)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).
选项
A、若f
x
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)=0
B、若f
x
’
(x
0
,y
0
)=0,则f
y
’
(x
0
,y
0
)≠0
C、若f
x
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)=0
D、若f
x
’
(x
0
,y
0
)≠0,则f
y
’
(x
0
,y
0
)≠0
答案
D
解析
依题意知(x
0
,y
0
)是拉格朗日函数,F(x,y,λ)=f(x,y)+λφ(x,y)的驻点,
因为φ
y
’
(x
0
,y
0
)≠0,所以从(2)式可得
代入(1)式得f
x
’
(‰,%)-
即f
x
’
(x
0
,y
0
)φ
y
’
(x
0
,y
0
)=φ
z
’
(x
0
,y
0
)f
y
’
(x
0
,y
0
).
当f
y
’
(x
0
,y
0
)≠0且φ
y
’
(x
0
,y
0
)≠0时,f
x
’
(x
0
,y
0
)φ
y
’
(x
0
,y
0
)≠0,从而厂f
y
’
(x
0
,y
0
)≠0,故选(D).
转载请注明原文地址:https://kaotiyun.com/show/uP54777K
0
考研数学一
相关试题推荐
本题满分11分。
设线性方程组已知[1,一1,1,一1]T是方程组的一个解,试求:(I)方程组的全部解,并用对应的齐次方程组的基础解系表示全部解;(Ⅱ)该方程组x2=x3的全部解.
(02年)设f(x)=求函数F(x)=∫0xf(t)dt的表达式.
(2015年)已知函数f(χ,y)满足f〞(χ,y)=2(y+1)eχ,f′(χ,0)=(χ+1)eχ,f(0,y)=y2+2y,求f(χ,y)的极值.
已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2f(t)dt,则当n≥2时,f(n)(0)=_________.
(2013年)设函数f(χ)=∫-1χ,则y=f(χ)的反函数χ=f-1(y)在y=0处的导数=_______.
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
(1999年)设函数f(χ)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f〞(ξ)=3.
A、处处可导B、恰有一个不可导点C、恰有两个不可导点D、至少有三个不可导点C一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式的不变性.利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数.幂指数函数f(x)g(x)求导法,隐
求下列函数的导数:
随机试题
关于两性霉素B下列叙述,错误的是
在进行监理机构内部考核前,应制定相应的考核细则,其制定的编制依据是()。
在施工过程中对项目目标进行动态跟踪和控制包括()。
()的发生标志着室内火灾进入充分发展阶段。
下列属于会计核算的环节的是()。
某食用油厂是增值税一般纳税人,被纳入农产品增值税进项税额核定扣除试点范围。2014年9月该食用油厂从农民手中收购一批大豆用来生产植物油,收购金额35万元。当月销售植物油,不含税销售额200万元,销售成本80万元。已知该食用油厂农产品耗用率为60%。食用油厂
社区工作者更关心社区居民,尤其是社区弱势群体权利的维护,更多时候会采取多种行动为社区居民争取合理的资源分配,说明社区工作( )。
人在抑郁状态下出现的病理性感觉阈限增高在临床上的表现是( )。
(1)研究大纲和教材(2)做成软件(3)考生使用(4)出题(5)销售
要使方程3x2+(m-5)x+m2-m-2=0的两个实根分别满足0
最新回复
(
0
)