首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22一2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12. (1)求a、b的值; (2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
设二次型f(x1,x2,x3)=XTAX=ax12+2x22一2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12. (1)求a、b的值; (2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
admin
2016-04-11
65
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
一2x
3
2
+2bx
1
x
3
(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12.
(1)求a、b的值;
(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)f的矩阵为A=[*],由λ
1
+λ
2
+λ
3
=a+2+(一2)=1,及λ
1
λ
2
λ
3
=|A|=2(一2a一b)=一12,解得a=1,b=2. (2)正交矩阵P=[*]下,f的标准形为f=2y
1
2
+2y
2
2
一3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/uVw4777K
0
考研数学一
相关试题推荐
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程。
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=________.
设有三个线性无关的特征向量,求a及An.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32,求A-1的特征值并判断A-1是否可对角化。
设A,B为n阶矩阵,且A,B的特征值相同,则().
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。设x=(x1,x2,x3)T,求方程xTAx=0的全部解。
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
随机试题
“易安体”指的是宋代著名女词人李清照的词体。()
A.液化性坏死B.凝固性坏死C.纤维素样坏死D.干性坏疽糖尿病患者的足坏死为
脏腑中有“主液"作用的是()
市场经济中,绝大多数合同是( )合同。
非参与优先股票的优先体现在()上。
下列有关财务报表审计的说法中,错误的是()。(2020年网络回忆版)
下列不属于盈余公积核算的内容有()。
()为企业岗位薪资制度奠定了基础。
确定教育目的的依据是什么?
为了实现对象的自动拖放,应该设置该对象的一个属性。下面设置中正确的是
最新回复
(
0
)