首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则向量组( )
已知向量组α1,α2,α3,α4线性无关,则向量组( )
admin
2019-01-14
23
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则向量组( )
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
线性无关。
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
线性无关。
C、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
-α
1
线性无关。
D、α
1
+α
2
,α
2
+α
3
,α
3
-α
4
,α
4
-α
1
线性无关。
答案
C
解析
因向量组α
1
,α
2
,α
3
,α
4
线性无关,所以由向量组α
1
,α
2
,α
3
,α
4
到向量组α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
-α
1
的过渡矩阵A=
,即
(α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
-α
1
)=(α
1
,α
2
,α
3
,α
4
)A。
由于|A|=2≠0,所以过渡矩阵A可逆,故向量组α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
-α
1
线性无关。
所以选C。
类似地,可以判断其他三个选项中的过渡矩阵均不可逆,所以选项A,B,D中的向量组均线性相关。
转载请注明原文地址:https://kaotiyun.com/show/ujM4777K
0
考研数学一
相关试题推荐
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量.
已知非齐次线性方程组当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
A,B是n阶矩阵,且r(A)+r(B)<n,证明A,B有公共的特征向量.
已知三元二次型xTAx经正交变换化为2y12-y22-y32,又知A*α=α,其中α=(1,1,-1)T,求此二次型的表达式.
求函数的单调区间、极值点及其图形的凹凸区间与拐点.
证明曲线Γ:x=aetcost,y=aetsint,z=aet与锥面S:x2+y2=z2的各母线(即锥面上点(x,y,z)与顶点的连线)相交的角度相同,其中a为常数.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
AB=0,A,B是两个非零矩阵,则
设二维连续型随机变量(X,Y)的联合概率密度为(I)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为求EY.
随机试题
脑出血最常见的部位是()。
关于宫颈癌的早期发现与预防,正确的措施有
胸部右前斜位检查,冠状面与胶片夹角应呈
与气机调节关系最密切的脏是与气的生成关系最密切的脏是
简述债权的特征。
下列说法中不正确的为()。
防火车绝不会开走,除非火警被解除。以下哪项陈述可以逻辑地从上述断定中推出?
FromMondayuntilFriday【36】peoplearebusyworkingorstudying,butintheeveningsand【37】weekendstheyarefreetoenjoythem
•Lookatthestatementsbelowandatthereviewsofvariousnewbusinessproductsontheoppositepage.•Whichreview(A,B,C
Ican’tsupportapolicy______Ihaveneverapproved.
最新回复
(
0
)