首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(Ⅰ)的所有解向量中线性无关的最大个数恰为n-r+1个.
设非齐次方程组 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(Ⅰ)的所有解向量中线性无关的最大个数恰为n-r+1个.
admin
2017-06-14
107
问题
设非齐次方程组
有解,且系数矩阵A的秩r(A)=r<n(b
1
,b
2
,…,b
n
不全为零).证明:方程组(Ⅰ)的所有解向量中线性无关的最大个数恰为n-r+1个.
选项
答案
因r(A)=r<n,可设ξ
1
,ξ
2
,…,ξ
n-r
是(Ⅰ)的对应齐次线性方程组的基础解 系,η
*
是(Ⅰ)的一个特解. 由η
*
不能被ξ
1
,ξ
2
,…,ξ
n-r
线性表示,且ξ
1
,ξ
2
,…,ξ
n-r
线性无关,可知η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关,而方程组(Ⅰ)的任意一解η都可以表示成η
*
和ξ
1
,ξ
2
,…,ξ
n-r
的线性组合. η=η
*
=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
. 所以(Ⅰ)的解向量的秩≤n-r+1. 又向量组η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
是(Ⅰ)的n-r+1个特解,考察 k
0
η
*
+k
1
(η
*
+ξ
1
)+k
2
(η
*
+ξ
2
)+…+k
n-r
(η
*
+ξ
n-r
)=0, 整理得 (k
0
+k
1
+k
2
+…+k
n-r
)η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0. 因η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关,上式成立当且仅当 [*] 即 k
1
=k
2
=…=k
n-r
=k
0
=0. 从而得证η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
线性无关, r(η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n-r
)=n-r+1,即方程组(Ⅰ)至少有n-r+1个线性无关的解向量,即(Ⅰ)的解向量组的秩≥n-r+1. 综上所述,方程组(Ⅰ)的所有解向量中线性无关的最大个数恰为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/Npu4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
如果0<β<α<π/2,证明
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
判断下列函数的单调性:
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
晚唐诗歌的艺术特征。
关于老年人消化性溃疡的描述,错误的是
肝“五声”归属于
抗粘着剂的主要作用是
禽灭活油苗最佳给药途径是()。
关于本案中甲与丁签订的转让协议的性质与效力有以下几种说法,其中正确的有()。本案中甲与丁签订了协议转让过程中,振东羽绒厂应当实施以下行为()。
下列关于高低应变法动力测桩的叙述中,正确的是( )。
财政部1994年6月同时发布的会计电算化管理文件有()。
当前微机上运行的Windows属于()。
当前,世界多极化和经济全球化深入发展,科学技术突飞猛进,给亚洲的发展带来新的机遇,也带来新的挑战。亚洲有49个国家和地区,大部分是发展中经济体。经济全球化,有利于它们更多地获得资金,尤其是跨国企业的投资,加快经济发展和结构调整;有利于它们更好地利用自身优势
最新回复
(
0
)