首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断 是否可对角化?并说明理由.
判断 是否可对角化?并说明理由.
admin
2017-06-14
25
问题
判断
是否可对角化?并说明理由.
选项
答案
[*] =(λ+a-1)(λ-a)(λ—a-1) =>λ
1
=1-a,λ
2
=a,λ
3
=a+1. 1)当λ
1
,λ
2
,λ
3
两两不相同时,即λ
1
≠λ
2
,λ
1
≠λ
3
,λ
2
≠λ
3
=>[*]a≠0,此时A可对角化; 2)当[*]A不可对角化; 3)当a=0时,λ
1
=λ
2
=1,λ
3
=0,r(1.E—A)=2,A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/upu4777K
0
考研数学一
相关试题推荐
将长度为1m的木棒随机地截成两段,则两段长度的相关系数为___________.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
洋洋乎与造物者游,而不知其所穷。
以下哪位科学家绘成了遗忘曲线
A.血浆胶体渗透压降低B.组织液静水压降低C.毛细血管通透性增加D.毛细血管血压增高E.淋巴和(或)静脉回流受阻严重丝虫病导致下肢水肿的原因是()。
伤亡事故按受伤性质划分可分为()。
影响计算机系统安全的主要因素有( )。
切线类技术分析方法中,常见的切线有()。Ⅰ.压力线Ⅱ.支撑线Ⅲ.趋势线Ⅳ.移动平均线
行业生命周期中最长的阶段是()。
x²+y²的最小值为2。(1)实数x,y满足条件:x²-y²-8x+10=0(2)实数x,y是关于t的方程t²-2at+a+2=0的两个实根
根据凯恩斯流动性偏好理论,当预期利率上升时,人们会()。
SummaryListentothepassage.Forquestions26-30,completethenotesusingnomorethanthreewordsforeachblank.America’
最新回复
(
0
)