首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列选项中矩阵A和B相似的是( )
下列选项中矩阵A和B相似的是( )
admin
2018-12-29
40
问题
下列选项中矩阵A和B相似的是( )
选项
A、 
B、 
C、 
D、 
答案
C
解析
选项A中,r(A)=1,r(B)=2,故A和B不相似。选项B中,tr(A)=9,tr(B)=6,故A和B不相似。选项D中,矩阵A的特征值为2,2,—3,而矩阵B的特征值为1,3,—3,故A和B不相似。由排除法可知应选C。
事实上,在选项C中,矩阵A和B的特征值均为2,0,0。由于A和B均可相似对角化,也即A和B均相似于对角矩阵
,故由矩阵相似的传递性可知A和B相似,故选C。
转载请注明原文地址:https://kaotiyun.com/show/uxM4777K
0
考研数学一
相关试题推荐
计算曲面积分I=x(8y+1)dydz+2(1一y2)dzdx一4yzdxdy,其中∑是曲面绕y轴旋转一周所成的曲面,它的法向量n与y轴正向的夹角恒大于
设向量a={1,2,3),b={1,1,0),若非负实数k使得向量a+kb与a-kb垂直,则实数k的值为______.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).求A的特征值.
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关.
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=-1,且分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是求a及λ0的值,并求矩阵A.
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设3×3阶矩阵A=[α,β1,β2],B=[β,β,β],其中α,β,β1,β2均为3维列向量,已知行列式|A|=2,则行列式|[α―β,2β1-β2,β1-2β2]|=______.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求矩阵A;
随机试题
有关研究表明,学生个体占用教师劳动时间数量,初中每生每天
冠状动脉粥样硬化发生率最高的部位是
解热镇痛药根据其结构可分为()。
所谓的内核是指保荐人(主承销商)的内核小组对拟向中国证监会报送的发行申请材料进行核查,确保证券发行不存在重大法律和政策障碍以及发行申请材料具有较高质量的行为。()
下列词语中,加下划线字的注音全都正确的一组是()
人们如何可以判定一个人没有自信?就是他对别人的态度的过度敏感和过度反应,那是“自尊”的过度膨胀,其结果却可能适得其反。这位学者这次自尊失当,恰恰反映了他还缺乏自信。这不是在示强而是示弱;不是别人在毁掉你,而是你自己在毁掉你自己的尊严。这个道理,应该是捍卫尊
一位药物专家只从G、H、J、K、L这5种不同的鱼类药物中选择3种,并且只从W、X、Y、Z这4种不同的草类药物中选择2种,来配制一副药方。他的选择必须符合下列条件:(1)如果他选G,就不能选H,也不能选Y;(2)他不能选H,除非他选K;
homes
EdnaO’BrienhaslivedinLondonforafewdecades,butshespeaks,asshewrites,inavoiceinflectedwiththerhythmsandacc
UniversalHealthCare,Worldwide,IsWithinReachA)Bymanymeasurestheworldhasneverbeeninbetterhealth.Since2000t
最新回复
(
0
)