首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数k,必有( ).
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数k,必有( ).
admin
2020-06-05
37
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对任意常数k,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
方法一
记A=2(α
1
,α
2
,α
3
,kβ
1
+β
2
),B=(α
1
,α
2
,α
3
,β
1
+kβ
2
).因向量β
1
可由α
1
,α
2
,α
3
线性表
示,故必存在常数λ
1
,λ
2
,λ
3
使
β
1
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
分别对A,B实施相应的初等列变换,得
A=(α
1
,α
2
,α
3
,kβ
1
+β
2
)
(α
1
,α
2
,α
3
,β
2
)
B=(α
1
,α
2
,α
3
,β
1
+kβ
2
)
(α
1
,α
2
,α
3
,kβ
2
)
可见向量组α
1
,α
2
,α
3
,kβ
1
+β
2
与α
1
,α
2
,α
3
,β
2
线性相关性相同,向量组α
1
,α
2
,α
3
,β
1
+kβ
2
与
α
1
,α
2
,α
3
,kβ
2
线性相关性相同.又由题设条件可知α
1
,α
2
,α
3
,β
2
线性无关,从而向量组α
1
,α
2
,
α
3
,kβ
1
+β
2
不论k为何值均线性无关;而向量组α
1
,α
2
,α
3
,kβ
2
线性相关与否依赖于k的取值(k=0时,线性相关;k≠0时线性无关),即可排除(B),(C),(D).从而选(A).
方法二
由题意可设β
1
=l
1
lα
1
+l
2
α
2
+l
3
3α
3
.因为β
2
不能由α
1
,α
2
,α
3
线性表示,所以,α
1
,α
2
,α
3
,β
2
线性无关.设
k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(kβ
1
+β
2
)=0
将β
1
=l
1
α
1
+l
2
α
2
+l
3
α
3
代入上式整理得
(k
1
+k
4
l
1
k)α
1
+(k
2
+k
4
l
2
k)α
2
+(k
3
+k
4
l
3
k)α
3
+k
4
β
2
=0
由α
1
,α
2
,α
3
,β
2
线性无关得k
1
+k
4
l
1
k=0,k
2
+k
4
l
2
k=0,k
3
+k
4
l
3
k=0,k
4
=0
可见对于任意常数k都有k
1
=k
2
=k
3
=k
4
=0,故α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
对于向量组α
1
,α
2
,α
3
,β
1
+kβ
2
,当k=0时是线性相关的;而当k≠0时,可证它是线性无关的.故应选(A).
方法三
用赋值法排除.取k=0,显然(B),(C)不能入选.取k=1并联系方法一,又排除(D),故(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/uyv4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
矩阵A=舍同于
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=-1③γ=(1,16,-11)T必是A的特征向量④|A—E|必为0
A是3阶矩阵,有特征值λ1一λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=一2对应的特征向量是ξ3.(Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由;(Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由;(Ⅲ)证明:任意三维非零向量β(β≠0)都是A
(2011年试题,一)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵,记则A=().
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
设分块矩阵是正交矩阵,其中A、C分别为m,n阶方阵,证明:A、C均为正交矩阵,且B=0.
设星形线的方程为,试求:它绕x轴旋转而成的旋转体的体积和表面积.
[2002年]设A,B为同阶矩阵.举一个二阶方阵的例子说明第一题的逆命题不成立;
设A是一个n阶方阵,满足A2=A,R(A)=s且A有两个不同的特征值.计算行列式|A-2E|.
随机试题
关于建设用地使用权的“土地”表述正确的是()
Ihopethatyou’llbemorecarefulintypingtheletter.Don’t______anything.
女性,34岁,反复胸闷,心悸3年,下肢水肿8个月。体格检查:血压13.3/9.33kPa(100/70mmHg),口唇发绀,颈静脉充盈,心界略大,心尖区舒张期杂音,肺底中小水泡音少许,肝肋下2cm,脾不大,下肢轻度水肿。以下病史哪一项最有意义
对支气管平滑肌上的β2受体具有选择性兴奋作用的药物是
定期定额征收方式适用于生产规模小,又确无建账能力,经主管税务机关审核,县级以上(含县级)税务机关批准可以不设置账簿或暂缓设置建账的小型纳税人。()
反向形成,是指对内心难以接受的观念或情感以相反的态度、行为表现出来。根据上述定义,下列属于反向形成的是:
公司的法定代表人以公司的名义从事经营活动时,因法定代表人自身的过失致使他人遭受重大经济损失。下列选项正确的是()
Onceuponatimeapoorfarmertakingasackofwheattothemilldidnotknow【C1】______todowhenitslippedfromhishorseand
Inrecentyearsfirmshavestuffedalotmoremoneyintotheirfinal-salarypensionschemes.Withafairwindfrommorefavorabl
Thetwoscholarsworkedatthetaskofwritingaprefacetothenewdictionaryforthreehours_________lastnight.
最新回复
(
0
)