首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,a1,a2,a3为3个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2. 求矩阵A的特征值;
设A是三阶矩阵,a1,a2,a3为3个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2. 求矩阵A的特征值;
admin
2020-03-10
40
问题
设A是三阶矩阵,a
1
,a
2
,a
3
为3个三维线性无关的列向量,且满足Aa
1
=a
2
+a
3
,Aa
2
=a
1
+a
3
,Aa
3
=a
1
+a
2
.
求矩阵A的特征值;
选项
答案
因为a
1
,a
2
,a
3
线性无关,所以a
1
+a
2
+a
3
≠0, 由A(a
1
+a
2
+a
3
)=2(a
1
+a
2
+a
3
),得A的一个特征值为λ
1
=2; 又由A(a
1
-a
2
)=-(a
1
-a
2
),A(a
2
-a
3
)=-(a
2
-a
3
),得A的另一个特征值为λ
2
=-1. 因为a
1
,a
2
,a
3
线性无关,所以a
1
-a
2
与a
2
-a
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/vAD4777K
0
考研数学三
相关试题推荐
当x→0时,下列四个无穷小量中,哪一个是比其它三个更高阶的无穷小量?
关于二次型f(x1,x2,x3)=,下列说法正确的是()
已知Q=,P为3阶非零矩阵,且满足PQ=O,则【】
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为()
幂级数的和函数为_____________________。
设函数f(x)在开区间(a,b)内可导,证明当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界。
某商品产量关于价格p的函数为Q=75-p2,求:(Ⅰ)当p=4时的边际需求,说明其经济意义;(Ⅱ)当p=4时的需求价格弹性,说明其经济意义;(Ⅲ)当p=4时,若价格提高1﹪,总收益是增加还是减少,收益变化率是多少?
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:X与Y是否独立?为什么?
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
设4阶方阵A的行列式|A|=0,则A中【】
随机试题
猪苓饮片的特征有
张某不服某区工商局扣押其海鲜产品的行为,向区法院提起行政诉讼。法官经过审查,工商局的扣押行为合法但确实存在不合理之处。下列哪一项说法是正确的?
基金管理人的宣传推介材料不应当()。
甲公司债券投资的相关资料如下:资料一:2015年1月1日,甲公司以银行存款2030万元购入乙公司当日发行的面值总额为2000万元的4年期公司债券,该债券的票面年利率为4.2%。债券合同约定,未来4年,每年的利息在次年1月1日支付,本金于2019年1月
“上师尧舜三代,外采东西强国,立行宪法,大开国会,以庶政与国民共之,行三权鼎立之制,则中国之治强,可计日待也。”维新派主张把西方资产阶级思想同中国传统思想相结合用于改造中国近代社会,该思想特点形成的根本原因是()。
根据《刑法》第13条的规定,犯罪是指危害社会的、依法应当受到刑罚处罚的行为,但是情节显著轻微危害不大的,()。
秘书工作直接对()负责。
Whenthereportwaspublished,variousenvironmentalgroupscriticizeditforbeingtoo
【B1】【B9】
Forthispart,youareallowed30minutestowriteashortessayentitledMyViewonCollegeTownfollowingtheoutlinegivenbe
最新回复
(
0
)