首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( )。
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( )。
admin
2020-08-03
61
问题
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( )。
选项
A、X与Y一定独立
B、X与Y一定不独立
C、X+Y与X-Y一定独立
D、X+Y与X-Y一定不独立
答案
D
解析
[解题思路] (X,Y)为二维正态随机变量,如cov(X,Y)≠0,则X,Y相关,不独立,同样如X+Y,X-Y相关,则X+Y,X-Y一定不独立。
解 由于随机变量(X,Y)服从二维正态分布,所以X与Y独立
X与Y不相关,即ρ
xy
=0,而题中对此未作任何假设,(A)和(B)有时成立,有时不成立,然而
cov(X+Y,X-Y)=cov(X,X)+cov(Y,X)-cov(X,Y)-cov(Y,Y)
=D(X)~D(Y)≠0,
由此推出X+Y与X-Y相关,因此X+Y与X-Y不独立,仅(D)入选。
转载请注明原文地址:https://kaotiyun.com/show/vMv4777K
0
考研数学一
相关试题推荐
[2001年]设某班车起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:二维随机变量(X,Y)的概率分布.
[*]
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型厂对应的矩阵为2ααT+ββT;
求幂级数(2n+1)xn的收敛域,并求其和函数.
[*]
(04年)设总体X的分布函数为:其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:(I)β的矩估计量;(Ⅱ)β的最大似然估计量.
[2013年]已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.
当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
随机试题
清人庄仲方在《金文雅序》中所说的“借才异代”是指【】
维持机体稳态的重要调节过程是
无肝脏首过效应生物利用度可达100%的是
某肉鸡场35日龄鸡发病,病鸡表现精神沉郁、羽毛松乱,死亡病鸡的肉眼病变主要有纤维素性心包炎、纤维素性肝周炎和纤维素性气囊炎。使用抗生素治疗后效果良好。该病最可能是
【案例四】背景材料:某公司中标某工程,根据《建设工程施工合同(示范文本)》(GF一1999—0201)与建设单位签订总承包施工合同。按公司成本管理规定,首先进行该项目成本预测(其中:人工费287.4万元,材料费504.4万元,机械使用费
下列各项中,符合城市维护建设税规定的有()。
张老师,女,45岁。喜欢吃各种甜食和巧克力、炸薯条等热量高的食品。平时基本上没有户外运动的习惯。体格测量结果为:身高165cm,体重80kg,腰围90cm,臀围110cm。 请根据上述案例回答以下问题。张老师的BMI是多少?按标准是否正常?
警惕汞污染1953年,日本水俣湾附近发现了一种“怪病”,称为“水俣病”。这种病症最初出现在猫身上,病猫步态不稳,抽搐、麻痹,甚至跳海而死。不久,陆续发现了患这种病症的人。患者步履蹒跚,手足麻痹乃至变形,神经错乱甚至死亡。后来发现,这不是传染病,而
Thetragedycouldhavebeen______ifthecrewhadfollowedsafetyprocedures.
ScoresofuniversityhallsofresidencesandlecturetheatresintheUKwerejudged"atseriousriskofmajorfailureorbreakdo
最新回复
(
0
)