首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
admin
2019-03-12
51
问题
设向量β可由向量组α
1
,α
2
,...,α
m
线性表示,但不能由向量组(I):α
1
,α
2
,...,α
m-1
,
线性表示,记向量组(Ⅱ):α
1
,α
2
,...,α
m-1
,β,则
选项
A、α
m
不能由(I)线性表示,也不能由(Ⅱ)线性表示.
B、α
m
不能由(I)线性表示,但可由(Ⅱ)线性表示.
C、α
m
可由(I)线性表示,也可由(Ⅱ)线性表示.
D、α
m
可由(I)线性表示,但不可由(Ⅱ)线性表示.
答案
B
解析
因为β可由α
1
,α
2
,...,α
m
线性表示,故可设
β=k
1
α
1
,k
2
α
2
,...,k
m
α
m
.
由于β不能由α
1
,α
2
,...,α
m-1
线性表示,故上述表达式中必有k
m
≠0.因此
α
m
=1/k
m
(β-k
1
α
1
-k
2
α
2
-…-k
m-1
α
m-1
).
即α
m
可由(Ⅱ)线性表示,可排除(A)、(D).
若α
m
可由(I)线性表示,设α
m
=l
1
α
1
+…+l
m-1
α
m-1
,则
β=(k
1
+k
m
l
1
)α
1
+(k
2
+k
m
l
2
)α
2
+…+(k
m-1
+k
m
l
m-1
)α
m-1
.
与题设矛盾,故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/vNP4777K
0
考研数学三
相关试题推荐
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一6E)=0.(2)r(A—aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
设u=f(x,y,z)有连续的偏导数,又函数y=y(x)及z=z(x)分别由exy—xy=4和ez=.
设f(x,y)与φ(y)均是二次可微函数.若z=f(x,y),其中y=y(x)是由方程x=y+φ(y)所确定,求.
计算下列不定积分:
计算下列反常积分:
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为f(x)=,一∞<x<+∞,λ>0.试求λ的矩估计量和最大似然估计量.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,,试分别求出满足下列各式的最小样本容量n:
设且AX=0有非零解,则A*X=0的通解为___________.
设且存在三阶非零矩阵B,使得AB=O,则a=______,b=______.
随机试题
小李去外地出差,出行工具可以在飞机、火车、长途汽车之间进行选择,三种运输方式经营企业之间的竞争关系是()
中毒型菌痢的发病主要是由于
孙李二人在起诉时需要提供的基本事实是()。孙李二人仅向法院提供了行政机关的处理决定书,而不能提供其他证据事实,法院审理此案可按()审理。
土地所有者、使用者和土地他项权利者更改地址的,应当在地址发生变更之日起()申请地址变更登记。
施工组织设计中的工程概况,主要包括______。
对幼儿英语学习效果的评价应当关注()和幼儿对所听英语的理解程度。
有预定的目的、需要一定意志努力的注意,指的是()。
小明不爱吃菜,只爱吃肉,妈妈为了改变他的这种不良习惯,告诉他,只要吃5根青菜,就可以吃一块肉。这体现了哪种强化原理()
李先生购买一处房产价值为100万元,首付金额为20万,其余向银行贷款。贷款年利率为12%(年度百分率),按月还款,贷款期限为20年。如果按照等额本金的方式还款.则李先生第一个月大约需要向银行偿还()。
有3个关系R1、R2和R3如下所示: 则由关系R1和R2得到关系R3的运算是()。
最新回复
(
0
)