首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在,求证:.
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在,求证:.
admin
2019-07-19
30
问题
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在,求证:
.
选项
答案
因为ln(1+x)≤x(x∈(一1,+∞)),故由拉格朗日中值定理可知,存在ξ(x)∈(ln(1+x),),使得 [*] 由此可得[*] 由于当x>0时,有[*]; 当一1<x<0时,有[*]. 故由夹逼定理知,[*].于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vNc4777K
0
考研数学一
相关试题推荐
试讨论函数,在点x=0处的连续性.
设区域D为:由以(0,0),(1,1),为顶点的四边形与以为顶点的三角形合成.而(X,Y)在D上服从均匀分布,求关于X和Y的边缘密度fX(x)和fY(y).
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
证明In,其中n为自然数.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分∫L3x2ydx+(x3+x一2y)dy.
求过点M(1,一2,2)且与直线L:垂直的平面方程.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:(1)其中f(t)为定义在(-∞,+∞)上的连续正值函数,常数a>0,b>0;(2)I2=(eλx-e-λy)da,常数λ>0.
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
随机地向半圆0<y<(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,用X表示原点到该点连线与χ轴正方向的夹角,求X的概率密度.
随机试题
如图所示钳子的名称是()。
子宫内膜异位症与子宫腺肌病的不同之处有________、________、________、________。
A.生长素B.皮质醇C.肾上腺素D.甲状腺激素由肾上腺髓质分泌的激素
烧伤合并急性肾功能衰竭的治疗原则为
顺经汤的组成药物有
施行结肠瘘口关闭手术,手术区消毒应为
有精神互用关系的两脏是()
慢性阻塞性肺气肿的病理改变不包括()。
按照双方是否互负给付义务为标准,可以把合同分为()。
在E-R图中,图形包括矩形框、菱形框、椭圆框。其中表示实体联系的是【】框。
最新回复
(
0
)