首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
admin
2014-02-05
179
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f
’’
(ξ)=一4.
选项
答案
【证明一】按题设可把函数f(x)在x=1处展开为泰勒公式,得[*](*)在(*)式中分别令x=0与x=2,并利用f(1)=2即知[*]把以上两式相加就有[*]这样一来,若f
’’
(ξ
1
)=f
’’
(ξ
2
),则f
’’
(ξ
1
)=f
’’
(ξ
2
)=一4.从而这时ξ可取为ξ
1
或ξ
2
若f
’’
(ξ
1
)≠f
’’
(ξ
2
),这时[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)]=一4就是f
’’
(ξ
1
)与f
’’
(ξ
2
)的一个中间值,按导函数的中间值定理(又称为达布定理)即知存在ξ∈(ξ
1
,ξ
2
)[*](0,2)使得f
’’
(ξ)=一4. 【证明二】转化为证明某函数的二阶导数在(0,2)[*]零点.设g
’’
(x)=一4.令F(x)=f(x)一g(x)则[*]ξ∈(0,2),使f
’’
(ξ)=一4[*]F
’’
(ξ)=0.注意g(x)=一2x
2
+c
1
x+c
2
,于是F(0)=f(0)一g(0)=一c
2
F(1)=(1)一g(1)=4一c
1
—c
2
F(2)=f(2)一g(2)=8—2c
1
—c
2
为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)一g(x)=f(x)一(一2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶町导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F
’
(η
1
)=F
’
(η
2
)=0,由题设知F
’
(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F
’
(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F
’’
(ξ)=f
’’
(ξ)一g
’’
(ξ)=0,即f
’’
(ξ)=g
’’
(ξ)=一4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/vT34777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为()
(2013年)设{an}为正项数列,下列选项正确的是()
(14年)设函数f(χ)具有2阶导数,g(χ)=f(0)(1-χ)+f(1)χ,则在区间[0,1]上【】
设A=有3个线性无关的特征向量,求x和y应满足的条件.
(08年)设f(χ)是周期为2的连续函数.(Ⅰ)证明对任意的实数t,有∫tt+2f(χ)dχ=∫02f(χ)dχ;(Ⅱ)证明G(χ)=∫0χ[2f(t)-∫tt+2f(s)ds]dt是周期为2的周期函数.
设A为三阶实对称矩阵,,矩阵A有一个二重特征值且rA=2。(Ⅰ)求常数a,b的值;(Ⅱ)用正交变换法化二次型XTAX为标准形。
设A*是3阶矩阵A的伴随矩阵,若|A|=-4,则行列式|(3A)-1+(A/2)*|=()
设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.
设{un},{cn}为正项数列,证明:(1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散;(2)若对一切正整数n满足cn(un/un+1)-cn+1≥a(a>0),且也收敛.
设f(x)=u(x)+v(x),g(x)=u(x)一v(x),并设都不存在,下列论断正确的是()
随机试题
简述公务员申诉与控告的主要区别。
分析竞争对手和对自身条件进行评估属于()策划。
某实施监理的工程项目,某监理公司与业主签订了委托监理合同后,建设单位将编制监理规划的有关文件交给监理单位,要求监理单位报送监理规划,监理单位收到有关文件后,总监理工程师派负责合同管理的专业监理工程师组织有关人员进行编制,经过45天的编制,完成了监理规划。经
儿童的发展是通过()。
阅读短文。完成101—105题。据英国《泰晤士报》报道,美国加州斯坦福大学的人类学教授理查德.克雷恩认为,距今5万年前,由于人类大脑发生了生理变化,生活在非洲大陆上的人类祖先爆发了一场艺术、文化以及个体表达上的巨大革命。克雷恩教授称,这场革命始于一
贫困:脱贫:共同富裕
随着第三次科技革命的进展,西方发达国家劳动生产率和就业率提高,人民物质生活水平有了相当程度的改善,这说明()。
Pentium微处理器的寄存器组是在8086/8088微处理器的基础上扩展起来的。下面是关于Pentium微处理器中寄存器组的叙述,其中正确的是()。
Youwillhearaspeakergivingagroupofmanagersadviceonhowtodealwithconflicts.Asyoulisten,forquestions1-12,
Whenaconsumerfindsthatanitemsheorheboughtisfaultyordoesnot【B1】______themanufacturer’sclaimforit,thefirstst
最新回复
(
0
)