首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
admin
2014-02-05
160
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f
’’
(ξ)=一4.
选项
答案
【证明一】按题设可把函数f(x)在x=1处展开为泰勒公式,得[*](*)在(*)式中分别令x=0与x=2,并利用f(1)=2即知[*]把以上两式相加就有[*]这样一来,若f
’’
(ξ
1
)=f
’’
(ξ
2
),则f
’’
(ξ
1
)=f
’’
(ξ
2
)=一4.从而这时ξ可取为ξ
1
或ξ
2
若f
’’
(ξ
1
)≠f
’’
(ξ
2
),这时[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)]=一4就是f
’’
(ξ
1
)与f
’’
(ξ
2
)的一个中间值,按导函数的中间值定理(又称为达布定理)即知存在ξ∈(ξ
1
,ξ
2
)[*](0,2)使得f
’’
(ξ)=一4. 【证明二】转化为证明某函数的二阶导数在(0,2)[*]零点.设g
’’
(x)=一4.令F(x)=f(x)一g(x)则[*]ξ∈(0,2),使f
’’
(ξ)=一4[*]F
’’
(ξ)=0.注意g(x)=一2x
2
+c
1
x+c
2
,于是F(0)=f(0)一g(0)=一c
2
F(1)=(1)一g(1)=4一c
1
—c
2
F(2)=f(2)一g(2)=8—2c
1
—c
2
为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)一g(x)=f(x)一(一2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶町导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F
’
(η
1
)=F
’
(η
2
)=0,由题设知F
’
(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F
’
(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F
’’
(ξ)=f
’’
(ξ)一g
’’
(ξ)=0,即f
’’
(ξ)=g
’’
(ξ)=一4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/vT34777K
0
考研数学二
相关试题推荐
[2011年]已知f(x)在x=0处可导,且f(0)=0,则
已知齐次线性方程组同解,求a,b,c的值.
已知齐次线性方程组同解,求a,b,c的值。
[*]
(02年)设随机变量X和Y都服从标准正态分布,则【】
[2001年]设f(x)的导数在x=a处连续,又则().
下列命题正确的是()。
微分方程2y"-6y′+5y=0的通解为____________.
设A为n阶实对称矩阵,且A2=A,r(A)=r(0<r<n),则行列式|A-2E|=________.
设对任意实数x有f(x)=min{2x+1,x+2,6-2x},求f(x)的最大值.
随机试题
在主动脉弓综合征中可见到的体征是
不良反应的报告程序和要求正确的是
公安机关对醉酒的人强制进行人身拘束,该行政行为则应()。
有效控制工程造价应体现的原则包括()。
对于前期差错更正,企业应当在附注中披露的内容有()。
下列关于住房公积金缴存的说法,正确的是()。
8支球队两两进行比赛,每场获胜可得2分,平局各得1分,输了不得分。一支球队要确保进入前三名,至少应积多少分?
要实现从经验事实向科学理论的转化,必须把握的基本点不包括()。
为考生文件夹下Xiugai文件夹中的News.exe文件建立名为Knews的快捷方式,并存放在考生文件夹下。
将考生文件夹下CHU文件夹中的文件JIANG.TMP删除。
最新回复
(
0
)