首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
admin
2014-02-05
138
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f
’’
(ξ)=一4.
选项
答案
【证明一】按题设可把函数f(x)在x=1处展开为泰勒公式,得[*](*)在(*)式中分别令x=0与x=2,并利用f(1)=2即知[*]把以上两式相加就有[*]这样一来,若f
’’
(ξ
1
)=f
’’
(ξ
2
),则f
’’
(ξ
1
)=f
’’
(ξ
2
)=一4.从而这时ξ可取为ξ
1
或ξ
2
若f
’’
(ξ
1
)≠f
’’
(ξ
2
),这时[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)]=一4就是f
’’
(ξ
1
)与f
’’
(ξ
2
)的一个中间值,按导函数的中间值定理(又称为达布定理)即知存在ξ∈(ξ
1
,ξ
2
)[*](0,2)使得f
’’
(ξ)=一4. 【证明二】转化为证明某函数的二阶导数在(0,2)[*]零点.设g
’’
(x)=一4.令F(x)=f(x)一g(x)则[*]ξ∈(0,2),使f
’’
(ξ)=一4[*]F
’’
(ξ)=0.注意g(x)=一2x
2
+c
1
x+c
2
,于是F(0)=f(0)一g(0)=一c
2
F(1)=(1)一g(1)=4一c
1
—c
2
F(2)=f(2)一g(2)=8—2c
1
—c
2
为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)一g(x)=f(x)一(一2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶町导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F
’
(η
1
)=F
’
(η
2
)=0,由题设知F
’
(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F
’
(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F
’’
(ξ)=f
’’
(ξ)一g
’’
(ξ)=0,即f
’’
(ξ)=g
’’
(ξ)=一4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/vT34777K
0
考研数学二
相关试题推荐
已知齐次线性方程组同解,求a,b,c的值.
[2004年]设随机变量X服从正态分布N(0,1),对给定的α(0
(90年)设函数f(χ)对任意的χ均满足等式f(1+χ)=af(χ),且有f′(0)=b,其中a、b为非零常数,则【】
已知函数f(x,y)=,则_________.
设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-=ααT,B=E+ααT,其中A的逆矩阵为B,则a=_______.
(2010年)设位于曲线(e≤x<+∞)下方,x轴上方的无界区域为G,则G绕x轴旋转一周所得空间区域的体积为______。
当x→0时,下列各式无穷小的阶数最高的是()。
求极限
求连续函数f(x),使其满足
设A为三阶矩阵,为非齐次线性方程组AX=的解,则()。
随机试题
节律性起始技术是属于
有关HELLP综合征,以下哪项是错误的
中国现行版药典是
下列最适合使用美托洛尔治疗的疾病是
阿托品用于解除消化道痉挛时,常可引起口干,属于氯霉素或抗肿瘤药所致的骨髓抑制,属于
甲向首饰店购买钻石戒指二枚,标签表明该钻石为天然钻石,买回后被人告知实为人造钻石。甲遂多次与首饰店交涉,历时1年零6个月,未果。现甲欲以欺诈为由诉请法院撤销该买卖关系,其主张能否得到支持?( )。
货币市场基金同时以股票、债券为主要投资对象,通过不同资产类别的配置投资,实现风险和收益上的平衡。()
从绝对量的构成看,资本成本包括()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y
最新回复
(
0
)