首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
admin
2014-02-05
168
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f
’’
(ξ)=一4.
选项
答案
【证明一】按题设可把函数f(x)在x=1处展开为泰勒公式,得[*](*)在(*)式中分别令x=0与x=2,并利用f(1)=2即知[*]把以上两式相加就有[*]这样一来,若f
’’
(ξ
1
)=f
’’
(ξ
2
),则f
’’
(ξ
1
)=f
’’
(ξ
2
)=一4.从而这时ξ可取为ξ
1
或ξ
2
若f
’’
(ξ
1
)≠f
’’
(ξ
2
),这时[*][f
’’
(ξ
1
)+f
’’
(ξ
2
)]=一4就是f
’’
(ξ
1
)与f
’’
(ξ
2
)的一个中间值,按导函数的中间值定理(又称为达布定理)即知存在ξ∈(ξ
1
,ξ
2
)[*](0,2)使得f
’’
(ξ)=一4. 【证明二】转化为证明某函数的二阶导数在(0,2)[*]零点.设g
’’
(x)=一4.令F(x)=f(x)一g(x)则[*]ξ∈(0,2),使f
’’
(ξ)=一4[*]F
’’
(ξ)=0.注意g(x)=一2x
2
+c
1
x+c
2
,于是F(0)=f(0)一g(0)=一c
2
F(1)=(1)一g(1)=4一c
1
—c
2
F(2)=f(2)一g(2)=8—2c
1
—c
2
为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)一g(x)=f(x)一(一2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶町导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F
’
(η
1
)=F
’
(η
2
)=0,由题设知F
’
(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F
’
(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F
’’
(ξ)=f
’’
(ξ)一g
’’
(ξ)=0,即f
’’
(ξ)=g
’’
(ξ)=一4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/vT34777K
0
考研数学二
相关试题推荐
(09年)使不等式>lnχ成立的χ的范围是【】
设a1,a2,a3均为3维向量,则对任意常数k,ι,向量组a1+ka3,a2+ιa3。线性无关是向量组a1,a2,a3线性无关的
设α1,α2,…,αs均为n维向量,下列结论不正确的是【】
(2013年)设曲线y=f(x)与y=x2一x在点(1,0)处有公共切线,则=______。
(89年)曲线y=χ+sin2χ在点()处的切线方程是_______.
(91年)问λ取何值时,二次型f=χ12+4χ22+4χ32+2λ1χ2-2χ1χ3+4χ2χ3为正定二次型?
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
设f(x)连续,且f(0)=0,f’(0)=2,求极限。
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{-1<X<4}≥a,则a的最大值为()。
设f(x,y)=则f(x,y)在点(0,0)处()。
随机试题
客运索道本身危险性较大,一旦出现故障,可能造成人员被困、坠落等事故。下列关于客运索道安全运行要求的说法中,错误的是()。
关于子宫性闭经正确的是
凡眼睛辨认5米以外目标的视觉能力低于正常,称视力低下。造成视力低下最主要原因是
在井巷掘进施工方法中,下列选项属于普通施工法的是()。
背景某安装工程公司承包了一发电厂机电安装工程,包括汽轮机组、发电机组及其附属设备、工艺管道系统。安装公司组成了项目部负责工程施工。施工准备阶段,编制了施工组织设计、各项施工方案。施工前,施工方案编制人员向施工作业人员作了分项、专项工程的施工方案交底,由于
城市给水排水管道在安管时,采用()接口时,安装应按照施工方案严格控制上、下游管道接装长度、中心位移偏差及管节接缝宽度和深度。
世界级的马拉松选手每天跑步都不超过6小时。一名选手每天跑步超过6小时,因此他不是一名世界级马拉松选手。以下哪项与上文推理形式相同?
下列关于SQLServer2008触发器的说法,错误的是()。
Whereisthisconversationprobablytakingplace?
【B1】【B11】
最新回复
(
0
)