首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
线性方程组 的通解可以表示为
线性方程组 的通解可以表示为
admin
2019-07-12
38
问题
线性方程组
的通解可以表示为
选项
A、(1,一1,0,0)
T
+c(0,1,一1,0)
T
,c任意.
B、(0,1,1,1)
T
+c
1
(0,一2,2,0)
T
+c
2
(0,1,一1,0)
T
,c
1
,c
2
任意.
C、(1,一2,1,0)
T
+c
1
(一1,2,1,1)
T
+c
2
(0,1,一1,0)
T
,c
1
,c
2
任意.
D、(1,一1,0,0)
T
+c
1
(1,一2,1,0)
T
+c
2
(0,1,一1,0)
T
,c
1
,c
2
任意.
答案
C
解析
非齐次方程组AX=β的通解是它的一个特解加上导出组AX=0的一个基础解系的线性组合.因此表达式中带参数的是导出组的基础解系,无参数的是特解.于是可从这两个方面来检查.
先看导出组的基础解系.
方程组的未知数个数n=4,系数矩阵
的秩为2,所以导出组的基础解系应该包含2个解.(A)中只一个,可排除.
(B)中用(0,一2,2,0)
T
,(0,1,一1,0)
T
为导出组的基础解系,但是它们是相关的,也可排除.
(C)和(D)都有(1,一2,1,0)
T
,但是(C)用它作为特解,而(D)用它为导出组的基础解系的成员,两者必有一个不对.只要检查(1,一2,1,0)
T
,确定是原方程组的解,不是导出组的解,排除(D).
转载请注明原文地址:https://kaotiyun.com/show/vVJ4777K
0
考研数学三
相关试题推荐
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:fn(x)=∫0xf0(t)(x-t)n-1dt(n=1,2,…);
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).
设随机变量X~N(μ,σ2),Y~U[-π,π],且X,Y相互独立,令Z=X+Y,求fZ(z).
设f(x)∈C[0,1],f(x)>0.证明积分不等式:In∫01f(x)dx≥∫01lnf(x)dx.
设f(x)=求a,b,c的值,使f"(0)存在.
若二次型2x12+x22+x32+2x1x2+2tx2x3的秩为2,则t=___________.
用切比雪夫不等式确定,掷一均质硬币时,至少需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
(1988年)设,一∞<x<+∞,则1)f’(x)=______.2)f(x)的单调性是______.3)f(x)的奇偶性是______.4)其图形的拐点是______.5)凹凸区间是______.6)水平渐近线是
随机试题
提出“消极的X理论”和“积极的Y理论”观点的学者是()
保护人体避免感染乙型病毒性肝炎的抗体是_______。
A.心B.脾C.肺D.肝E.肾称“罢极之本”的是
根据建设部2000年颁布的《建筑工程施工图设计文件审查暂行办法》规定,建设单位应当将施工图报送建设行政主管部门,由建设行政主管部分委托有关审查机构进行审查。审查的主要内容包括()。
关于融资租赁合同当事人的权利义务,下列说法正确的有()。
“孟母三迁”的典故体现了影响人发展的哪一种因素?这种因素在人的发展中有什么作用?
在教育过程中,切勿“揠苗助长”“陵节而施”,这是人的身心发展的()的要求。
受全球经济危机的影响,H公司今年的经济效益远没有往年好。公司员工月奖金都受到了不同程度的影响。大家最担心的还是年终奖的情况。据可靠消息透露,一个员工的年终奖将受到很大影响,除非他对公司做出了非同一般的业绩并且没有缺勤的情况发生。如果上述断定是真的,则以下
阅读下列程序说明和C代码,回答问题1~2。[说明]本程序用古典的Eratosthenes的筛法求从2起到指定范围内的素数。如果要找出2至10中的素数,开始时筛中有2到10的数,然后取走筛中的最小的数2,宜布它是素数,并把该素数的倍数都取走。这样,
Christmasiscelebrated【B1】______theworld.December25isbelievedtobethebirthdayofJesusChrist.People【B2】______gift
最新回复
(
0
)