首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P﹣1AP为对角形矩阵.
设矩阵A=,已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P﹣1AP为对角形矩阵.
admin
2020-06-05
62
问题
设矩阵A=
,已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P
﹣1
AP为对角形矩阵.
选项
答案
因为矩阵A有三个线性无关的特征向量,而λ=2是其二重特征值,故矩阵A属于特征值λ=2必有两个线性无关的特征向量,也就是方程组(A-2E)x=0的基础解系包含两个线性无关的解向量,根据齐次线性方程解的性质可知R(A-2E)=3—2=1. 又A-2E=[*] 故而x=2,y=﹣2. 又因为矩阵A的主对角线上的元素之和等于矩阵A的所有特征值之和,所以矩阵A的第三个特征值λ
3
=10-2-2=6. 当λ
1
=λ
2
=2时,解方程(A-2E)x=0.由 A-2E=[*] 得基础解系p
1
=(﹣1,1,0)
T
,p
2
=(1,0,1)
T
. 当λ
3
=6时,解方程(A-6E)x=0.由 A-6E [*] 得基础解系p
3
=(1,﹣2,3)
T
取P=(p
1
,p
2
,p
3
)=[*],则P
﹣1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vVv4777K
0
考研数学一
相关试题推荐
设f(x)=,则f(n)(0)=_________.
设则f(x)的间断点为x=___________。
已知二次型f(x1,x2,x3)=x12+2x22+bx32一4x1x2+4x1x3+2ax2x3(a>0)经正交变换(x1,x2,x3)T=P(y1,y2,y3)T化成了标准形f=2y12+2y22—7y32,求a、b的值和正交矩阵P.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设f(x)为可导函数,且满足条件=—1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=()
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设,讨论当a,b取何值时,方程组Ax=b无解、有唯一解、有无数个解,有无数个解时求通解.
随机试题
根据以下情境材料。回答下列问题。某市境内国道、公路、城际快速通道、运煤专线等交通干线纵横交叉,近期致人死亡的交通事故频发。为深入剖析此类事故高发的原因,寻找有针对性的治理对策,市公安局汇总了2016-2017年该类警情的数据,制作了如下的分析报告。
《静修集》的作者是()
A.腺病毒肺炎B.金黄色葡萄球菌肺炎C.急性感染性喉炎D.支气管哮喘E.肺炎球菌肺炎病情重,稽留热多见
当混凝土拌和物的坍落度大于220mm时,用钢尺测量混凝土扩展后最终的最大直径和最小直径,在二者之差小于()mm的条件下,用其算术平均值作为坍落扩展度值。
为了尽量降低设备运输过程中潜在的风险和损失,业主一般采用( )方式转移风险。
“强化服务”要求会计人员具有()和优良的服务质量。
根据研究的目的观察某些特定的行为属于()。
2014年第二届青年奥运会将在南京举行,省团委提出组织一项题为“青年与未来”的活动。你作为某高校的团委负责人,请提出一个参赛方案。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。为进一步提升北京旅游行业整体队伍素质,打造高水平、懂业务的旅游景区建设与管理队伍,北京旅游局将为工作人员进行一次业务培
ImpressionsofAmericaSanFranciscoisareallybeautifulcity.ChinaTown,peopledbyChineselabourers,isthemostartis
最新回复
(
0
)