首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
admin
2019-05-14
86
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与
2
使k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
=常数,矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.于是 Y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/2O04777K
0
考研数学一
相关试题推荐
5令2x3=y,则=3+2=5.
设z=f(x,y)满足≠0,由z=f(x,y)可解出y=y(z,x).求:
已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆(x-)2=1/2相切,有相同的曲率半径和凹凸性,求常数a,b,c.
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=dxdy,试求f(t)
求下列二重积分计算I=|sin(x-y)|dxdy,其中D:0≤x≤y≤2π;
求定积分:J=∫-1x(1-|t|)dt,x≥-1.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.试求:的概率分布;
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求矩阵A.
随机试题
Word文档中,创建表格的方式不正确的是()。
当申报的成交价格明显低于正常的市场价时,应以()作为缴纳税费的依据。
现配制试配强度为42.23MPa的混凝土,选用水泥的实际强度为52MPa,粗骨料为5~40mm粒径的碎石,回归系数αa=0.46,αb=0.06,则所需水灰比为()。
企业的日常薪酬管理包括()。
案例:赵老师在上《动画作品设计制作》一课时,在简单讲解了动画的概念后,为学生展示播放了一集《猫和老鼠》,但播放完毕后距离下课只剩下十分钟。赵老师赶忙让学生以《龟兔赛跑》为题讨论并合作创作一则动画作品,学生到下课也没有完成作品。教师只好安排学生下课
人是会思考的芦苇.也是世界上唯一会运用逻辑推理的生物。环环相扣,________的逻辑推理,确实可以帮助我们进行正确的思考、研究和决策。在二战前著名的德国国会纵火案中,季米特洛夫的无罪辩护.就是利用自己娴熟的法律知识和________的逻辑推理,驳倒了法西
1
用于去掉一个字符串的右边的空白部分的函数是______。
Hamilah,theDoctorscookwasinawhirl(混乱,繁忙)ofgreatactivity.Shewascontinuallystickingherhead【C1】______ofthecookhou
Whatdeterminesthekindofpersonyouare?Whatfactorsmakeyoumoreorlessbold,intelligent,orabletoreadamap?Allof
最新回复
(
0
)