首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xm)=(x1+a1x2)2+(x2+a2x3)2+…+(xn—1+an—1xn)2+(xn+anx1)2,其中ai(i=1,2,…,咒)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
设有n元实二次型f(x1,x2,…,xm)=(x1+a1x2)2+(x2+a2x3)2+…+(xn—1+an—1xn)2+(xn+anx1)2,其中ai(i=1,2,…,咒)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
admin
2016-04-11
42
问题
设有n元实二次型f(x
1
,x
2
,…,x
m
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n—1
+a
n—1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,咒)为实数.试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f为正定二次型.
选项
答案
1+(一1)
n-1
a
1
a
2
…a
n
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vVw4777K
0
考研数学一
相关试题推荐
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
用变量代换x=lnt将方程化为y关于t的方程,并求微分方程的通解。
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A为n阶矩阵,下列结论正确的是()。
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1,证明:|f(x)|≤1.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
求r=4(1+cosθ)与θ=0,θ=π/2围成的图形绕极轴旋转一周所得旋转体的体积。
设(a>0),A是3阶非零矩阵,且ABT=0,则方程组Ax=0的通解为()
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
随机试题
_______是思维活动的最基本形式。
关于担保物权的表述正确的有()。
巴斯把婴儿气质分为()。
【2013江西】一定社会的政治经济制度对教育目的制定具有()。
某国有公司直接负责的主管人张某,在签订一份商业合同的过程中,因严重不负责任而上当受骗,致使国家利益遭受损失。根据我国《刑事诉讼法》、《刑法》和有关司法解释的规定,本案应由哪一个机关直接受理?()
语句Print"Sgn(-26)=";Sgn(-26)的输出结果为()。
建立一个新的标准模块,应该选择()下的“添加模块”命令。
下列关于二定义性的说法错误的是______。
ManyofnovelistCarsonMcCullers’charactersareisolated,disappointedpeople.
In1967,inresponsetowidespreadpublicconcernarousedbymedicalreportsofasbestosrelateddeaths,theNationalMedicalRe
最新回复
(
0
)