首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D是有界闭区域,下列命题中错误的是
设D是有界闭区域,下列命题中错误的是
admin
2019-01-06
30
问题
设D是有界闭区域,下列命题中错误的是
选项
A、若f(x,y)在D连续,对D的任何子区域D
0
均有
(x,y)∈D).
B、若f(x,y)在D可积,f(x,y)≥0,但不恒等于0((x,y)∈D),则
f(x,y)dσ>0.
C、若f(x,y)在D连续,
f(x,y)dσ=0,则f(x,y)≡0((x,y)∈D).
D、若f(x,y)在D连续,f(x,y)>0 ((x,y)∈D),则
f(x,y)dσ>0.
答案
B
解析
直接指出其中某命题不正确.
因为改变有限个点的函数值不改变函数的可积性及相应的积分值,因此命题(B)不正确.
设(x
0
,y
0
)是D中某点,令f(x,y)=
则在在区域D上f(x,y)≥0且不恒等于零,但
f(x,y)dσ=0.因此选(B).
或直接证明其中三个是正确的.
命题(A)是正确的.用反证法、连续函数的性质及二重积分的不等式性质可得证.
若f(x,y)在D不恒为零→
(x
0
,y
0
)∈D,f(x
0
,y
0
)≠0,不妨设f(x
0
,y
0
)>0,由连续性→
D,且当(x,y)∈D
0
时f(x,y)>0,由此可得
f(x,y)dσ>0,与已知条件矛盾.因此,f(x,y)≡0 (
(x,y)∈D).
命题(D)是正确的.利用有界闭区域上连续函数达到最小值及重积分的不等式性质可得证.
这是因为f(x,y)≥minf(x,y)=f(x
0
,y
0
)>0,其中(x
0
,y
0
)是D中某点,于是由二重积分的不等式性质得
f(x,y)dσ≥f(x
0
,y
0
)σ>0,其中σ是D的面积.
命题(C)是正确的.若f(x,y)≠0→在(x,y)∈D上f
2
(x,y)≥0且不恒等于零.由假设f
2
(x,y)在D连续→
f
2
(x,y)dσ>0.与已知条件矛盾.于是f(x,y)≡0在D上成立.因此选(B).
转载请注明原文地址:https://kaotiyun.com/show/vzP4777K
0
考研数学三
相关试题推荐
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
(04年)设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时
(07年)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fx(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为【】
(06年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A
(04年)设有以下命题:【】①(u2n-1+u2n)收敛,则un收敛.②若un收敛,则un+1000收敛.③若>1,则un发散.④若(un+vn)收敛,则都收敛.则以上命题中正确的是
(02年)设幂级数anχn与bnχn的收敛半径分别为,则幂级数的收敛半径为【】
设0<a<1,区域D由χ轴,y轴,直线χ+y=a及χ+y=1所围成,且I=sin2(χ+y)dσ,J=ln3(χ+y)dσ,K=(χ+y)dσ.则【】
设曲线L位于χoy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A,已知,且L过点(),求L的方程为_______.
设A,B为同阶方阵,(1)如果A,B相似,试证:A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证:(1)的逆命题成立.
随机试题
在“曲线”对话框中X轴和Y轴分别代表的是:
下列心内膜炎类型,除哪一项之外均属非感染性心内膜炎
超急性排斥反应的主要原因
男,35岁。汽车撞伤左季肋区4h,神志模糊,体温37.5℃,脉搏细弱,血压60/40mmHg,全腹压痛,无反跳痛,无尿。首选的治疗措施是
贷款五级分类法将贷款分为正常、()损失五类。
拥有商品或货币并独立自主地从事商品交换活动以实现自己经济利益的当事人,包括自然人和以一定组织形式出现的法人,都属于市场主体。()
极限=_________.
A、Baby-theParrotDetective.B、AnAmazonParrot.C、RisingCrimeRatesinAmericanSociety.D、HowtoProtectYourHouse.AWhicho
BillStoneisnotanastronaut—heistheworld’smostfamouscaver.Leadinglargeinternationalteamsandbackedbysponsorsl
收藏
最新回复
(
0
)