首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三维列向量,其中α3为非零向量,且满足Aα1=α1-α2,Aα2=α2-α3,Aα3=α3. (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:矩阵A不可相似对角化.
设A为3阶矩阵,α1,α2,α3为三维列向量,其中α3为非零向量,且满足Aα1=α1-α2,Aα2=α2-α3,Aα3=α3. (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:矩阵A不可相似对角化.
admin
2021-03-10
63
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三维列向量,其中α
3
为非零向量,且满足Aα
1
=α
1
-α
2
,Aα
2
=α
2
-α
3
,Aα
3
=α
3
.
(Ⅰ)证明:向量组α
1
,α
2
,α
3
线性无关;
(Ⅱ)证明:矩阵A不可相似对角化.
选项
答案
(Ⅰ)由Aα
1
=α
1
-α
2
,Aα
2
=α
2
-α
3
,Aα
3
=α
3
得 (A-E)α
1
=-α
2
,(A-E)α
2
=-α
3
,(A-E)α
3
=0, 令k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (*) (*)两边左乘A-E得 -k
1
α
2
-k
2
α
3
=0, (**) (**)两边左乘A-E得 k
1
α
3
=0, 因为α
3
为非零向量,所以k
1
=0,代入(**)得k
2
=0,再代入(*)得k
3
=0, 故α
1
,α
2
,α
3
线性无关. (Ⅱ)令P=(α
1
,α
2
,α
3
),且P可逆, 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
-α
2
,α
2
-α
3
,α
3
)得 AP=P[*]5,或P
-1
AP=[*] 即A~B, 显然B的特征值为λ
1
=λ
2
=λ
3
=1, E-B=[*] 由r(E-B)=2得B不可相似对角化,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/w784777K
0
考研数学二
相关试题推荐
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求.
(1998年)设χ∈(0,1),证明(1)(1+χ)ln2(1+χ)<χ2;(2)
已知向量组与向量组等秩,则x=_____.
曲线y=lnx上与直线x+y=1垂直的切线方程为_______.
曲线处的切线方程为___________.
方程y’’一3y’+2y=ex+1+excos2x的特解形式为()
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
随机试题
(2004年)根据我国宪法规定,下列有关审计机关的表述哪一项是错误的?()
如果赵明去广州,那么张红或王青也去广州。如果上述判定为真,则以下选项必然为真的是()。
据美国《赫芬顿邮报》报道,拥抱除了让我们有安全和被爱的感觉外,更有益于身体健康,并且没有任何“副作用”,是不可或缺的健康催化剂。以下各项如果为真,不能加强上述论断的是:
下列事件最佳逻辑排列顺序为()。①无田可种②城市人口激增③大量涌人城市④土地被征用⑤就业困难
萎靡不振对于(),相当于()对于食物
在新文化运动中,强调教育的“民族性”,反对民族虚无主义,重视感情教育,并主张“收回教育权”的教育思潮是()
证明不等式:
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
"SociologyClass"Inthediscussion,thestudentsidentifyaspectsofgangactivity.Indicatewhethereachofthefollowingis
(1)Governmentscientistslistedformaldehyde(甲醛)asaCarcinogen,substancethatproducescancer,andsaiditisfoundinworriso
最新回复
(
0
)