首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三维列向量,其中α3为非零向量,且满足Aα1=α1-α2,Aα2=α2-α3,Aα3=α3. (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:矩阵A不可相似对角化.
设A为3阶矩阵,α1,α2,α3为三维列向量,其中α3为非零向量,且满足Aα1=α1-α2,Aα2=α2-α3,Aα3=α3. (Ⅰ)证明:向量组α1,α2,α3线性无关; (Ⅱ)证明:矩阵A不可相似对角化.
admin
2021-03-10
94
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三维列向量,其中α
3
为非零向量,且满足Aα
1
=α
1
-α
2
,Aα
2
=α
2
-α
3
,Aα
3
=α
3
.
(Ⅰ)证明:向量组α
1
,α
2
,α
3
线性无关;
(Ⅱ)证明:矩阵A不可相似对角化.
选项
答案
(Ⅰ)由Aα
1
=α
1
-α
2
,Aα
2
=α
2
-α
3
,Aα
3
=α
3
得 (A-E)α
1
=-α
2
,(A-E)α
2
=-α
3
,(A-E)α
3
=0, 令k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (*) (*)两边左乘A-E得 -k
1
α
2
-k
2
α
3
=0, (**) (**)两边左乘A-E得 k
1
α
3
=0, 因为α
3
为非零向量,所以k
1
=0,代入(**)得k
2
=0,再代入(*)得k
3
=0, 故α
1
,α
2
,α
3
线性无关. (Ⅱ)令P=(α
1
,α
2
,α
3
),且P可逆, 由(Aα
1
,Aα
2
,Aα
3
)=(α
1
-α
2
,α
2
-α
3
,α
3
)得 AP=P[*]5,或P
-1
AP=[*] 即A~B, 显然B的特征值为λ
1
=λ
2
=λ
3
=1, E-B=[*] 由r(E-B)=2得B不可相似对角化,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/w784777K
0
考研数学二
相关试题推荐
在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0).(1)求l的方程;(2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.
(1990年)求微分方程y〞+4y′+4y=eaχ之通解,其中a为实数.
设曲线L的方程为y=lnx(1≤x≤e)。设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标。
曲线y=lnx上与直线x+y=1垂直的切线方程为_______.
以y=C1eχ+eχ(C2cosχ+C3sinχ)为特解的三阶常系数齐次线性微分方程为_______.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
设z=f(χ2+y2,),且f(u,v)具有二阶连续的偏导数,则=_______.
交换二次积分次序:
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1.(I)求方程组Aχ=0的通解.(Ⅱ)求二次型f(χ1,χ2,χ3).
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
随机试题
Hehasreachedapoint______hedoesn’tworkformoney.
生产经营单位不得对从业人员行使相关的安全生产方面的权利进行打击报复,具体为()。
2016年3月20日,上海的甲公司与北京的乙公司签订了一份买卖合同,约定:甲公司向乙公司购买1000吨化工原料,总价款为200万元;乙公司在合同签订后1个月内交货,甲公司在验货后7日内付款。双方没有明确约定履行地点。合同签订后,甲公司以其办公用房作抵押向丙
对下列历史事件发生背景描述准确的是()。
体育方面的球类、体操、田径属于()。
盛唐山水诗_____,起于武后、中宗朝形成的文人竞作山水别墅诗之风,而上官婉儿写作的别墅诗则有山林开启之功。她对山水诗有特别的钟爱,每逢出游,婉儿总会______。她的山水诗在出游记胜时,描山写水,______自然,并且气魄不凡。依次填入画横线部分最恰当的
根据以下资料,回答下列问题。2017年全国举办马拉松赛事达1102场,其中,中国田径协会举办的A类赛事223场,B类赛事33场。2017年马拉松赛事的参与人次达到了498万人次,2016年、2015年马拉松赛事的参与人次分别
古埃及在科学方面的成就。
用高级程序设计语言编写的程序()。
•Readthearticlebelowaboutproductdifferentiationandthequestionsontheoppositepage.•Foreachquestion13-18,markon
最新回复
(
0
)