首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
admin
2013-12-27
119
问题
(1997年试题七)设B是秩为2的5×4矩阵,α
1
=[1,1,2,3]
T
,α
2
=[一1,1,4,一1]
T
,α
3
=[5,一1,一8,9]
T
,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
选项
答案
由题设,rB=2,故解空间维数为4一rB=2,经简单验证,知α
1
,α
2
线性无关,因而可作为解空间的一组基.下面运用施密特正交化方法计算标准正交基,令[*]再经过标准规范化,得[*]即为标准正交基.
解析
由于解空间的基不唯一,施密特正交代后规范正交基也不唯一.本题中α
1
,α
2
,α
3
任意两个均可作为解空间的基.
转载请注明原文地址:https://kaotiyun.com/show/wC54777K
0
考研数学一
相关试题推荐
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设直线y=ax与抛物线y=x2所围成的图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S=S1+S2达到最小,并求出最小值.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算
设矩阵若向量都是方程组Ax=0的解,试证r(A)=2;
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1
随机试题
PLC进行程序调试时直接进行现场调试即可。()
两汉历史散文达到高度发展阶段的标志是________,它开创了传记文学之先河。
下列哪些不是卵巢良性肿瘤的并发症
房地产市场上可能会存在两宗完全一样的房地产产品。()
某投标联合体,其投标文件内未附联合体各方的共同投标协议,则( )。
在这样一个电子阅读如此方便的时代,曾经作为城市文化符号的实体书店已经走到了十字路口。面对网络的冲击和市场经济的压力,生存还是灭亡。已成为一个非常严肃的话题。这段文字作者的态度为()。
下列有关苏绣的表述正确的有()。
区别普通教师和优秀教师的真正标志是()。
玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格可下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
(1)MarkTwain’sinstructionswerequiteclear:hisautobiographywastoremainunpublisheduntil100yearsafterhisdeath.Who
最新回复
(
0
)