首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,α5均是4维列向量.记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5).已知方程AX=α5有通解k(1,一1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程BX=0的解的是 (
设α1,α2,α3,α4,α5均是4维列向量.记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5).已知方程AX=α5有通解k(1,一1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程BX=0的解的是 (
admin
2020-06-20
64
问题
设α
1
,α
2
,α
3
,α
4
,α
5
均是4维列向量.记A=(α
1
,α
2
,α
3
,α
4
),B=(α
1
,α
2
,α
3
,α
4
,α
5
).已知方程AX=α
5
有通解k(1,一1,2,0)
T
+(2,1,0,1)
T
,其中k是任意常数,则下列向量不是方程BX=0的解的是 ( )
选项
A、(2,1,0,1,一1)
T
.
B、(3.0.2.1,一1)
T
.
C、(1,一2,一2,0,一1)
T
.
D、(0,3,一4,1,一1)
T
.
答案
C
解析
由AX=α
5
的通解k(1,一1,2,0)
T
+(2,1,0,1)
T
知α
5
可由α
1
,α
2
,α
3
,α
4
表出为
α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,
即 (k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
—α
5
=0,
即 BX=(α
1
,α
2
,α
3
,α
4
,α
5
)x=(α
1
,α
2
,α
3
,α
4
,α
5
)
=0,
其中k是任意常数.
因为BX=0的解中,无论k为何值,x
4
,x
5
不可能为0,故(C)是错误的.
转载请注明原文地址:https://kaotiyun.com/show/wGx4777K
0
考研数学三
相关试题推荐
设y=f(1nx)ef(x),其中f可微,计算.
[*]
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设B是3阶实对称矩阵,特征值为1,1,一2,并且α=(1,一1,1)T是B的特征向量,特征值为一2.求B.
已知α1,α2,α3线性无关α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于__________.
设A=,B为三阶非零矩阵,且AB=0,则t=________.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________
设A为n阶非零矩阵,且A2=A,r(A)=r.求|SE+A|.
设z=arctan.
随机试题
Moreandmoreemployersusetheonlineapplicationprocesstohelpthemfindtherightpersonforthejob.So,it’slikelythat
下列属于水溶性维生素的是()
可摘局部义齿中人工牙无法起到的作用是
从A工厂生产的半成品转至B工厂生产成品的形式属于:对于B工厂的余料转至C工厂加工,以下表述正确的是:
某公司电梯维修合同规定,当每年上门维修不超过3次时,维修费用为5万元,当超过3次时,则在此基础上按每次2万元付费,根据成本性态分析,该项维修费用属于()。
20世纪30年代美国推行“中立政策”的原因有哪些?
S城的人非常喜欢喝酒,经常出现酗酒闹事的现象,影响了S城的治安环境。为了改善城市的治安环境,市政府决定:减少S城烈酒生产的产量。以下哪项最能对市政府的决定进行质疑?()
Whenisthetalkbeinggiven?
Afterhavingbeentrappedunderneaththemineforthreeconsecutivedays,theminersbecameveryweakfromlackof________.
A、Theyrequestedtotransfertoasaferdepartment.B、Theyquitworktoprotecttheirunbornbabies.C、Theysoughthelpfromuni
最新回复
(
0
)