首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,α5均是4维列向量.记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5).已知方程AX=α5有通解k(1,一1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程BX=0的解的是 (
设α1,α2,α3,α4,α5均是4维列向量.记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5).已知方程AX=α5有通解k(1,一1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程BX=0的解的是 (
admin
2020-06-20
86
问题
设α
1
,α
2
,α
3
,α
4
,α
5
均是4维列向量.记A=(α
1
,α
2
,α
3
,α
4
),B=(α
1
,α
2
,α
3
,α
4
,α
5
).已知方程AX=α
5
有通解k(1,一1,2,0)
T
+(2,1,0,1)
T
,其中k是任意常数,则下列向量不是方程BX=0的解的是 ( )
选项
A、(2,1,0,1,一1)
T
.
B、(3.0.2.1,一1)
T
.
C、(1,一2,一2,0,一1)
T
.
D、(0,3,一4,1,一1)
T
.
答案
C
解析
由AX=α
5
的通解k(1,一1,2,0)
T
+(2,1,0,1)
T
知α
5
可由α
1
,α
2
,α
3
,α
4
表出为
α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,
即 (k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
—α
5
=0,
即 BX=(α
1
,α
2
,α
3
,α
4
,α
5
)x=(α
1
,α
2
,α
3
,α
4
,α
5
)
=0,
其中k是任意常数.
因为BX=0的解中,无论k为何值,x
4
,x
5
不可能为0,故(C)是错误的.
转载请注明原文地址:https://kaotiyun.com/show/wGx4777K
0
考研数学三
相关试题推荐
设A、B均为n阶方阵,证明:|AB|=|A|.|B|.
设A=(aij)n×n,且=0,i=1,2,…,n,求r(A*)及A*.
设其中f(s,t)二阶连续可偏导,求du及
设对于事件A,B,C有P(A)=P(B)=P(C)=P(AB)=P(BC)=0,P(AC)=则A,B,C三个事件至少出现一个的概率为_____.
微分方程y’’+2y’+5y=0的通解为______.
已知随机变量Y服从[0,5]上的均匀分布,则关于x的一元二次方程4x2+4Yx+Y+2=0有实根的概率p=_______.
(2005年)极限=______。
(2005年)极限=______.
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
极限=A≠0的充要条件是()
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)