首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2及β1,β2均是3维线性无关向量组. 证明存在3维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
已知α1,α2及β1,β2均是3维线性无关向量组. 证明存在3维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
admin
2021-07-27
65
问题
已知α
1
,α
2
及β
1
,β
2
均是3维线性无关向量组.
证明存在3维向量δ,δ不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出.
选项
答案
α
1
,α
2
是两个3维向量,不可能表出所有3维向量,β
1
,β
2
也一样.若δ不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出,则δ即为所求.设δ
1
不能由α
1
,α
2
线性表出,但可由β
1
,β
2
线性表出,设为δ
1
=x
1
α
1
+x
2
α
2
;设δ
2
不能由β
1
,β
2
线性表出,但可由α
1
,α
2
线性表出,设δ
2
=y
1
α
1
+y
2
α
2
,则向量δ=δ
1
+δ
2
既不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出,向量δ即为所求.因若δ=δ
1
+δ
2
=k
1
α
1
+k
2
α
2
,则δ
1
=δ-δ
2
(k
1
-y
1
)α
1
+(k
2
-y
2
)α
2
,这和δ
1
不能由α
1
,α
2
线性表出矛盾(或δ
2
=δ-δ
1
=(k
1
-x
1
)
1
β+(k
2
-x
2
)β
2
,这和δ
2
不能由β
1
,β
2
线性表出矛盾).
解析
转载请注明原文地址:https://kaotiyun.com/show/why4777K
0
考研数学二
相关试题推荐
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
求(x+2)y"+xy’2=y’的通解.
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
随机试题
气性坏疽常由多菌混合感染,以产气荚膜梭菌最常见。()
下列属于公共政策执行主体的有()
既又与汝就食江南。就食:
下述H+分泌的描述,不正确的是
关于髋关节前后位片的标准显示,下列哪项错误
( )指基金资产因投资于各种债券(国债、地方政府债券、企业债、金融债等)而定期取得的利息收入。
基本分析的优点有()
下列有关期货的说法错误的是()。
下列当事人可以到法院进行行政诉讼的是()。
平面x-y+z=0与曲面z=x2+y2的交线在点(1,1,2)处的切线方程为_______________.
最新回复
(
0
)