首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)E(0,1),使得 f(x)=f(0)+xf’[θ(x)x];
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)E(0,1),使得 f(x)=f(0)+xf’[θ(x)x];
admin
2018-05-25
69
问题
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:
对(-1,1)内任一点x≠0,存在唯一的θ(x)E(0,1),使得
f(x)=f(0)+xf’[θ(x)x];
选项
答案
对任意x∈(-1,1),根据微分中值定理,得 f(x)=f(0)+xf’[θ(x)x],其中0<θ(x)<1. 因为f’’(x)∈C(-1,1)且f’’(x)≠0,所以f’’(x)在(-1,1)内保号,不妨设f’’(x)>0,则f’(x)在(-1,1)内单调增加,又由于x≠0,所以θ(x)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/wzW4777K
0
考研数学三
相关试题推荐
设f(x)=arcsinx,ξ为f(x)在[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
设f(x),g(x)在[a,b]上二阶可导,gˊˊ(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:(1)在(a,b)内,g(x)≠0;(2)(a,b)内至少存在一点ξ,使.
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy-y=0和ez-xz=0所确定,求
求极限
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有f(x,y)dxdy=_________.
设随机变量X1,X2,…,Xn相互独立,且Xi服从参数为λi的指数分布,其密度为求P{X1=min{X1,X2,…,Xn}}.
设随机变量X与Y相互独立,都服从均匀分布U(0,1).求Z=|X-Y|的概率密度及
设随机变量X服从正态分布,其概率密度为则常数k=________.
设总体X的密度函数为其中θ>0为未知函数,又设x1,x2,…,xn是X的一组样本值,则参数θ的最大似然估计值为__________.
求下列函数关于x的导数:(1)(2)y=ef(x).f(ex),其中f(x)具有一阶导数;(3)y=.其中f’(x)=arctanx2,并求(4)设f(t)具有二阶导数,,求f[f’(x)],{f[f(x)])’.
随机试题
二梅出自于()
矛盾问题的精髓是()。
小青龙汤的治疗病证有
关于海洋运输货物保险,下列哪一选项是正确的?(卷一/2010年第43题)
承包商提出施工索赔时,应提供的依据包括( )。
某市建筑公司承建某县政府办公楼,工程不合税造价为1000万元,则该施工企业应缴纳的营业税、城市维护建设税和教育费附加分别是()万元。
选择计数调整型抽样方案时,为降低使用方风险可选择()。[2007年真题]
安居工程
Readtheextractfromanarticleaboutnegotiationbelow.Inmostofthelines(41-52),thereisoneextraword.Iteitheris
()就业办公室()研究生部()校长办公室()运动中心
最新回复
(
0
)