首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
admin
2019-08-11
31
问题
如果β=(1,2,t)
T
可以由α
1
=(2,1,1)
T
,α
2
=(一1,2,7)
T
,α
3
=(1,一1,一4)
T
线性表示,则t的值是__________。
选项
答案
5
解析
β可以由向量组α
1
,α
2
,α
3
线性表示的充分必要条件是非齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,对该方程组的增广矩阵作初等行变换得
,
而方程组有解的充分必要条件是系数矩阵与增广矩阵有相同的秩,因此t一5=0,即t=5。
转载请注明原文地址:https://kaotiyun.com/show/xCN4777K
0
考研数学二
相关试题推荐
矩阵A=,求解矩阵方程2A=XA-4X.
设α1=(2,1,2,3)T,α2=(-1,1,5,3)T,α3=(0,-1,-4,-3)T,α4=(1,0,-2,-1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明使得F’’(x0)=0.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设n>0,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
求下列方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)2]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵,现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(b),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
随机试题
我国在霍乱的防治研究中,将检出的霍乱弧菌区分为流行株和非流行株,对这两类菌株及其引起的腹泻病人的医学处理有所区别。两类菌株的区分若选用5株噬菌体把菌株分为32型,其中流行株的噬菌体型是哪几型
海绵窦综合征表现为
A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.夜间阵发性呼吸困难E.伴体循环淤血的呼吸困难急性呼吸窘迫综合征多表现为
下列情况下沟通的信息易被曲解的是( )。
下列各项中( )属于建筑法明确规定的内容。
对于证券公司提交()的申请,国务院证券监督管理机构自受理之日起20个工作日做出批准或者不予批准的书面决定。Ⅰ.要求审查董事任职资格Ⅱ.要求审查监事任职资格Ⅲ.破产申请Ⅳ.变更公司章程
“受托代理负债”科目的期末贷方余额,反映民间非营利组织尚未清偿的受托代理负债。()
某社会服务机构拟向某基金会申请资助,基金会要求该机构编制预算并列出服务项目的开支及所需资源设施。为满足基金会的要求,该机构在编制预算时宜采用()。
通过云计算技术可以实现共享软硬件资源和信息。下列直接使用到云计算技术的是()。
对同一事物,“仁者见仁,智者见智”,这说明
最新回复
(
0
)