首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5一α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5一α4的秩为4.
admin
2019-04-08
65
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
转化为矩阵证明.设A=[α
1
,α
2
,α
3
,α
5
],B=[α
1
,α
2
,α
3
,α
5
一α
4
].注意到α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,知,α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,则 B=[α
1
,α
2
,α
3
,α
5
一α
4
]=[α
1
,α
2
,α
3
,α
5
一λ
1
α
1
一λ
2
α
2
-λ
3
α
3
] [*] [α
1
,α
2
,α
3
,α
5
]=A. 因而矩阵B与A等价,故秩(B)=秩(A)=4,即α
1
,α
2
,α
3
,α
5
一α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/xJ04777K
0
考研数学一
相关试题推荐
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
二阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且A2(α1+α2)=α1+α2,则|A|=_______.
设矩阵其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
随机试题
A.开口度正常B.开口过大呈半脱位C.中度开口受阻D.弹响及开口过大E.轻度开口受限关节盘、关节囊附着松弛后的开口情况是
某患者,男性,13岁,半月来全身浮肿,乏力。尿蛋白(++++),定量4.0g/24h,镜检偶见沉渣红细胞和透明管型。BP120/80mmHg,血浆白蛋白29g/L,BUN5mmol/L,Scr98umol/L,胆固醇、甘油三酯升高。该例最可能的病
下列不属于计量检测设备标明计量器具所处的状态应有的明显标志是()。
根据《建设工程工程量清单计价规范(GB50500-2008),招投标时不能作为竞争性费用的是()。
在互联网时代,因个人信息泄露导致的垃圾短信骚扰、社交账号被盗甚至网络诈骗等现象时有发生。这启示我们()。
试分析音乐教育对提高学生综合素质的作用。
我国教师法规定:本法的实施细则,由国务院具体制定。这一规定属于()。
【C1】______thewayitfeels,lonelinessoftenhasnothingtodowithbeingalone.Forsomepeople,feelingsof【C2】______aresharp
WorkisaveryimportantpartoflifeintheUnitedStates.WhentheearlyProtestant【1】cametothiscountry,theybroughtthe【
In1742BenjaminFranklininventedanewtypeofstove,forwhichhewasofferedapatent.Franklinrefusedit,arguinginhisa
最新回复
(
0
)