首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
求下列微分方程的通解: (I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
admin
2017-07-28
83
问题
求下列微分方程的通解:
(I) y”一3y’=2—5x; (Ⅱ)y”+y=cosxcos2x.
选项
答案
(I)先求相应齐次方程的通解,由于其特征方程为λ
2
一3λ=λ(λ一3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y*(x)=x(Ax+B),代入原方程,得 [y*(x)]”一3[y*(x)]’=2A一3(2Ax+B)=一6Ax+2A一3B=2—6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y*(x)=x
2
.从而,原方程的通解为y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*].根据线性微分方程的叠加原理,可以分别求出y”+y=[*]的特解y
1
*(x)与y
2
*(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时[*]的特解应具有形式:y
1
*(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,[*]即[*] 另外,由于3i不是特征根,所以另一方程的特解应具有形式y
2
*(x)=Ccos3x+Dsin3x,代入原方程,可得[*]D=0.这样,即得所解方程的通解为 y(x)=[*]+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xKu4777K
0
考研数学一
相关试题推荐
当x→0时,下列四个无穷小量中,哪一个是比其他三个更低阶的无穷小量?().
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2008年试题,21)设n元线性方程组Ax=b,其中a为何值,方程组有无穷多解?求通解.
微分方程2x3y’=y(2x2一y2)的通解是____________.
设f(x)为连续函数,且且当x→0时,与bxk为等价无穷小,其中常数b≠0,k为某正整数,求k与b的值及f(0),证明f(x)在x=0处可导并求f’(0).
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设,则下列结论正确的是
设f(t)连续并满足f(t)=cos2t+∫0tf(s)sinsds,求f(t).
随机试题
暑淫证的性质特点
医疗机构的医务人员违反献血法规定,将不符合国家规定标准的血液用于患者的,可能承担以下法律责任,除了
下列不属于继发性肺结核临床病理特征的是
施工成本分析就是对成本形成过程和影响成本升降的因素进行分析,以寻求进一步降低成本的途径,进行成本分析需要的第一手资料有()。
旅游需求的时间指向性是指旅游需求具有()。
石川馨认为,全面质量管理(TQC)在日本就是全公司范围内的质量管理,其具体内容包括()。
下列属于内部学习动机的是()。
下列选项中,体现人民警察秉公执法的有()
如图所示,某条河流一侧有A、B两家工厂,与河岸的距离分别为4km和5km,且A与B的直线距离为11km,为了处理这两家工厂的污水,需要在距离河岸1km处建造一个污水处理厂,分别铺设排污管道连接A、B两家工厂。假定河岸是一条直线,则排污管道的总长最短为(
某公司2012年1—4季度的营业收入总额分别为135、300、233、110百万元。该公司由东部、中部、西部三大地区分公司组成。2013年在三大分公司的累积营业收入(指当年至各季度止累积)和全年利润总额的数据如下图所示(单位:百万元)。根据材料,下列
最新回复
(
0
)