首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2018-05-17
44
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X,因为α,β正交,所以A
2
=αβ
T
.αβ
T
=O,于是λ
2
X=0,而x≠0,故矩阵A的特征值为λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(OE-A)=r(A)≥1,所以n-r(OE-A)≤n-1<n,所以A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/tck4777K
0
考研数学二
相关试题推荐
(2010年试题,8)设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
(1998年试题,一)曲线的渐近线方程为__________.
(2008年试题,二)微分方程(y+x2e-x)dx一xdy=0的通解是__________.
(2008年试题,一)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
(2012年试题,一)设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
证明:(-1<x<1)
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
随机试题
甲在乙商场购买的热水器在正常使用中突然爆炸,致使甲面部多处受伤,则若甲提起侵权诉讼,诉讼时效期间为()。
1995年中华口腔医学会杂志社在珠海制定的种植成功标准的描述,正确的一项是
下列属于诺成合同的是()。
【背景】某项目业主分别与甲、乙两个施工单位签订了土建施工合同和设备安装合同。土建施工合同约定:管理费为人、材、机费之和的10%,利润为人、材、机费用与管理费之和的6%,规费为人、材、机费用与管理费和利润之和的5%,增值税率为11%,其中
基金财务会计报告分析可以达到的目的有( )。
换入资产和换出资产公允价值均能可靠计量时,采用换入资产公允价值优先原则。()
根据公司法律制度的规定,有限责任公司单独或者合计持有公司全部股东表决权10%以上的股东,以特定事由提出解散公司诉讼,并符合《公司法》有关规定的,人民法院应予以受理。下列表述中,属于该类事由的有()。
Whathasthewomanjustbeenoffered?
CluestoHelpExplaintheFrequencyofInjuriesThethreewomenareallseriousathletes,andtheyworktogetheratasmall
A、Oilrefinery.B、Linentextiles.C、Foodproducts.D、Deepwaterport.B前三项都与商品有关,而D)却与此无关,可先排除。短文中提到It…haslongbeenknownforit
最新回复
(
0
)