首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设E为四阶单位矩阵,且 B=(E+A)-1(E-A) 则(E+B)-1=_____________.
设E为四阶单位矩阵,且 B=(E+A)-1(E-A) 则(E+B)-1=_____________.
admin
2019-03-22
88
问题
设
E为四阶单位矩阵,且
B=(E+A)
-1
(E-A)
则(E+B)
-1
=_____________.
选项
答案
[*]
解析
解一 用单位矩阵恒等变形法,得到
B+E=(E+A)
-1
(E-A)+(E+A)
-1
(E+A)=(E+A)
-1
(E-A+E+A)=2(E+A)
-1
.
故
解二 在B=(E+A)
-1
(E-A)两边左乘E+A,得到
(E+A)B=E-A, 即 AB+A+B-E=0,
由命题2.2.1.5即得
(A+E)(B+E)=[1×1-(-1)]E=2E (其中a-b=1,C=-1),
故
注:命题2.2.1.5 设同阶方阵A,B满足AB+aA+bB+cE=O,其中a,b,c为常数,则
(A+bE)(B+aE)=(ab-c)E.
(1)当ab-c≠0时,A+bE与B+aE均为可逆,且
(A+bE)
-1
=(B+aE)/(ab-c), (B+aE)
-1
=(A+bE)/(ab-c).
(2)AB=BA,因而对满足BA+aA+bB+cE=O的矩阵A,B同样也有上述结论,即
A+bE,B+aE可逆,且
(A+bE)
-1
=(B+aE)/(ab-c), (B+aE)
-1
=(A+bE)/(ab-c).
转载请注明原文地址:https://kaotiyun.com/show/xYP4777K
0
考研数学三
相关试题推荐
求函数f(x)=的单调区间与极值。
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"一2xy’一4y=0,y(0)=0,y’(0)=1。(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
设函数y=则y(n)(0)=________。
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
设A=。(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解。
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=a+b都是μ的无偏估计.并确定a、b,使D(T)达到最小.
随机试题
柬埔寨的洞里萨湖是一个水量季节变化很大的大湖。洞里萨湖北部的昊哥通王城两边有两个巨大的长方形人工湖——西池和东池。这两个大水池并不是在地面挖坑形成的,而是在地面上四面筑起土墙形成的高于地面的水库,是著名而古老的灌溉工程。读图,回答下列问题。这两个地上
关于正常人体温下列哪项是错误的?
下列哪一项不是正常肝脏的声像图表现()
女性,32岁,因半年来胸闷不适,近1周昏厥发作3次来门诊心电图检查正常,为进一步明确昏厥原因,首选下列哪项检查
支配阑尾的神经是交感神经腹腔丛和
地基验槽通常采用观察法。对于基底以下的土层不可见部位,通常采用()法。
关于职业纪律与员工个人之间的关系。正确的说法是()。
A、是同学B、很佩服对方C、是多年的邻居D、以前关系不太好D
Beforediscussingtheeffectofdeflationandinflationonthedistributionofincome,itwillbeusefulto【C1】______theseterm
Feelingstressedoutorinneedofaboost?Soonyoumaybeabletoturntoyoursmartphoneforhelp.AmericantechcompanyThyn
最新回复
(
0
)