首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设E为四阶单位矩阵,且 B=(E+A)-1(E-A) 则(E+B)-1=_____________.
设E为四阶单位矩阵,且 B=(E+A)-1(E-A) 则(E+B)-1=_____________.
admin
2019-03-22
45
问题
设
E为四阶单位矩阵,且
B=(E+A)
-1
(E-A)
则(E+B)
-1
=_____________.
选项
答案
[*]
解析
解一 用单位矩阵恒等变形法,得到
B+E=(E+A)
-1
(E-A)+(E+A)
-1
(E+A)=(E+A)
-1
(E-A+E+A)=2(E+A)
-1
.
故
解二 在B=(E+A)
-1
(E-A)两边左乘E+A,得到
(E+A)B=E-A, 即 AB+A+B-E=0,
由命题2.2.1.5即得
(A+E)(B+E)=[1×1-(-1)]E=2E (其中a-b=1,C=-1),
故
注:命题2.2.1.5 设同阶方阵A,B满足AB+aA+bB+cE=O,其中a,b,c为常数,则
(A+bE)(B+aE)=(ab-c)E.
(1)当ab-c≠0时,A+bE与B+aE均为可逆,且
(A+bE)
-1
=(B+aE)/(ab-c), (B+aE)
-1
=(A+bE)/(ab-c).
(2)AB=BA,因而对满足BA+aA+bB+cE=O的矩阵A,B同样也有上述结论,即
A+bE,B+aE可逆,且
(A+bE)
-1
=(B+aE)/(ab-c), (B+aE)
-1
=(A+bE)/(ab-c).
转载请注明原文地址:https://kaotiyun.com/show/xYP4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若a[(h)+bf(2h)—f(0)=a(h),试求a,b的值。
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(12+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是()
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
改变积分次序得[*]
若行列式的每个元素都加1,则行列式值的增量为所有代数余子式之和.
设n是正整数,则
随机试题
简述《海牙规则》的主要内容。
羊水过多合并胎儿畸形时不正确的处理原则:
以下哪些特征符合肠旋转不良
螺旋体感染首选()
氨基甙类抗生素的常见不良反应为
下列统计指标中,可以采用算术平均数方法计算平均数的有()。
工作岗位设计方法研究中使研究人员易于发现问题的是()。
在社会主义民主政治建设方面,毛泽东提出的“六又”政治局面是()。
2012年底,D公司预期红利为2.12元,且以每年10%的速度增长,如果该公司的必要收益率为每年14.2%,其股票现价等于内在价值,则下年预期价格为()。
设f(x)=,且f’(0)存在,则a=______,b=________,c=_______
最新回复
(
0
)