首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)连续,且x∫02xf(t)dt+2∫x0tf(2t)dt=2x3(x-1),求f(x)在[0,2]上的最大值和最小值.
已知f(x)连续,且x∫02xf(t)dt+2∫x0tf(2t)dt=2x3(x-1),求f(x)在[0,2]上的最大值和最小值.
admin
2017-05-31
78
问题
已知f(x)连续,且x∫
0
2x
f(t)dt+2∫
x
0
tf(2t)dt=2x
3
(x-1),求f(x)在[0,2]上的最大值和最小值.
选项
答案
对已知等式两边求导: 左边=(x∫
0
2x
f(t)dt+2∫
x
0
tf(2t)dt)’=∫
0
2x
f(t)dt+2xf(2x)一2xf(2x) =∫
0
2x
f(t)dt, 右边=[2x
3
(x一1)]’=8x
3
一6x
2
, 由题设有∫
0
2x
f(t)dt=8x
3
一6x
2
. 两边再对x求导2f(2x)=24x
2
一12x,即f(2x)=6x(2x一1)=3.2x(2x一1).令u=2x,得f(u)=3u(u一1),即f(x)=3x(x一1). 再求f(x)在[0,2]上的最值. [*]最大值和最小值.
解析
对变限积分求导,可得f(x)的解析式,然后求最值.
转载请注明原文地址:https://kaotiyun.com/show/xYu4777K
0
考研数学一
相关试题推荐
[*]
因E(2X2-X1)=2E(X2)-E(X1)=2μ-μ=μ[*]
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=________.
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
(2009年试题,19)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧.
(1999年试题,八)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,p(x,y,z)为点0(0,0,0)到平面π的距离,求
随机试题
可帮助企业减少研究费用,又可使企业保护自己,防止竞争对手技术进步对自己构成威胁的是()
有关动脉粥样硬化,正确的描述是
与猪瘟病毒具有部分交叉免疫原性的是
A、.红细胞管型B、.白细胞管型C、.上皮细胞管型D、.透明管型E、.蜡样管型主要见于肾盂肾炎的管型是
目前,在我国基金市场中,个人投资者是主要持有者。( )
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
思维品质主要包括哪些方面?
左图折叠后为()。
多线程是Java程序的________机制,它能同步共享数据、处理不同事件。
【B1】【B10】
最新回复
(
0
)