首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2021-02-25
98
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
,…,α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
,…,α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,
r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.
注:本题也可以用齐次线性方程组有非零解考虑正确选项.
由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵
A的列向量组线性相关.又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向
量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量
组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/xi84777K
0
考研数学二
相关试题推荐
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
,求A的全部特征值,并证明A可以对角化.
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是_________.
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
已知曲线L的方程(1)讨论L的凹凸性;(2)过点(=1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设曲线L的方程为y=lnx(1≤x≤e)。设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标。
证明不等式3x<tanx+2sinx,x∈(0,)。
设z=f(x2+y2+z2,xyz)且f一阶连续可偏导,则=_____
设有一薄板,其边沿为一抛物线,如图3—6所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
随机试题
净现值等于()
超声在人体中传播遇到空气时,正确的描述是
患者,男,40岁。体检发现尿内出现多量管型。表示
在软弱地基上修建的土质路堤,下列工程措施中可加强软土地基的稳定性的有()。
将教育功能分为个体功能和社会功能是依据其()。
人民警察内务建设的原则是高效务实、加强监督、着眼基层。()
白居易在登上庐山时写下:“人间四月芳菲尽,山寺桃花始盛开。”产生诗中景象的原因是:
1984年以前,只有阿司匹林和艾斯塔米诺芬占据着有利可图的非处方止痛药市场。然而到了1984年,易布洛芬预计会占有非处方止痛药销售量的15%的份额。商业专家据此预测,在1984年,阿司匹林和艾斯塔米诺芬的总销售量相应下降了15%。上文最后一句话中提到的预测
如下图所示,主机A发送数据包给B,在数据包经过路由器转发的过程中,下列封装在数据包3中的目的IP地址和目的MAC地址,正确的是()。
Accompaniedbycheerfulmusic,webegantodance.
最新回复
(
0
)