首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2021-02-25
52
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
,…,α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
,…,α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,
r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.
注:本题也可以用齐次线性方程组有非零解考虑正确选项.
由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵
A的列向量组线性相关.又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向
量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量
组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/xi84777K
0
考研数学二
相关试题推荐
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn-1f(x"一tn)dt,求
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
计算二重积分其中D={(x,y)|x2+y2≤a2,常数a>0.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则=______。
计算积分:∫一12[x]max{1,e一x}dx,其中,[x]表示不超过x的最大整数.
求u=x2+y2+z2在x/a+y/b+z/c=1上的最小值.
随机试题
Helentypes______.
急性糜烂性胃炎治疗不应使用
均质土坝的防渗体是()。
下列截面形状的钢筋混凝土梁中,抗弯刚度和抗扭能力大的是()。
根据《公司法》的规定,下列关于股份有限公司股份发行的表述不正确的是( )。
企业当期计提的坏账准备应该计入信用减值损失,且计提后不能转回。()
幂级数的和函数是_____.
记时器控件能有规律的以一定时间间隔触发【】事件,并执行该事件过程中的程序代码。
A、USaidprogramsin21countriesoverthenextthreeyearswillbehaltedB、USaidmissionsin21countriesoverthenextthree
A、Hesavesmuchmoneybecauseheneedn’tdrivecarortakebus.B、Hedoesn’thavetogetupontimeeveryday.C、Hecaneasilye
最新回复
(
0
)