首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2021-02-25
32
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
,…,α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
,…,α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,
r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.
注:本题也可以用齐次线性方程组有非零解考虑正确选项.
由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵
A的列向量组线性相关.又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向
量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量
组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/xi84777K
0
考研数学二
相关试题推荐
设曲线y=a+x-x3,其中a0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在X轴上方与X轴所围成图形的面积相等,求a.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。求曲线x=φ(
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设y=f(x)=(Ⅰ)讨论函数f(x)的奇偶性,单调性,极值;(Ⅱ)讨论曲线y=f(x)的凹凸性,拐点,渐近线,并根据以上(Ⅰ)、(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设二元函数计算二重积分其中D={(x,y)||x|+|y|≤2}.
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
设区域D为x2+y2≤R2,则=________
随机试题
比较理想化的大跨度结构形式是()。
Thehorseandcarriageisthingofthepast,butloveandmarriageisstillwithusandstillcloselyinterrelated.MostAmerica
中国共产党正确处理政治思想领域的人民内部矛盾所实行的方针是
A.强电场效应B.热效应C.弱刺激效应D.光化学效应E.压强电离效应治疗肿瘤及脉络膜新生血管时主要是利用激光的
促进胰岛素分泌的药物是
通常将饰面层()的材料,作为饰面装修构造类型的命名。
左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
与幼儿自我意识的真正出现相联系的是()。
[*]
Theword"mass"inLine5couldbestbereplacedbyTheexampleinParagraph4isintendedtodemonstrate
最新回复
(
0
)