首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2021-02-25
36
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
,…,α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
,…,α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,
r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.
注:本题也可以用齐次线性方程组有非零解考虑正确选项.
由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵
A的列向量组线性相关.又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向
量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量
组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/xi84777K
0
考研数学二
相关试题推荐
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度b时(如图1—3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
求二元函数f(χ,y)=e-χy在区域D={(χ,y)|χ2+4y2≤1}上的最大值和最小值.
设区域D为x2+y2≤R2,则=________
设A为n阶可逆矩阵,则下列等式中不一定成立的是()
(1)证明:当|x|充分小时,不等式0≤tan2x一x2≤x4成立;(2)设xn=。
斜边长为2a等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水压力为_________
随机试题
绒毛膜癌的病理特点是
男性,50岁。1年来头晕、乏力,半月来加重伴心悸、纳差、恶心,血压增高为165/105mmHg,化验尿蛋白(++),沉渣RBC4~8/HP,血Hb80g/L,血肌酐610μmol/L,BUN25mmol/L。根据肾功能损害程度,该患者符合
抗原抗体特异性反应时,若抗原或抗体极度过剩则无沉淀形成,称为
A、上颌第一双尖牙B、上颌第二双尖牙C、上颌第一磨牙D、上颌第二磨牙E、上颌第三磨牙与腮腺导管开口相对的牙是
在项目建设的各个阶段,都必须用合同来明确和约束项目参与各方的()。
【背景资料】施工单位甲承揽了国内某机场(单跑道)跑道加长的建设任务,建设单位的基本要求之一是该项工程的施工不能影响机场的正常运行。在施工过程中发生了以下事件:事件1:施工单位在水泥混凝土道面面层正式施工前,摊铺了试验段。事件2
下列会计处理中,不正确的是()。
古墓中,被列为全国重点文物保护单位的可分为三类()。
Long,longagothereWeremanyanimalslivingintheforest(森林).Onedaytherecameafairy(仙女).Sheaskedthemonkey,"Doyou
WaystoGetaHappyStateofMindHappinessisalwaysinashorttime,subjecttosomethingunexpectedofeverythingfromth
最新回复
(
0
)