首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)= (Ⅰ)讨论函数f(x)的奇偶性,单调性,极值; (Ⅱ)讨论曲线y=f(x)的凹凸性,拐点,渐近线,并根据以上(Ⅰ)、(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
设y=f(x)= (Ⅰ)讨论函数f(x)的奇偶性,单调性,极值; (Ⅱ)讨论曲线y=f(x)的凹凸性,拐点,渐近线,并根据以上(Ⅰ)、(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
admin
2019-07-28
28
问题
设y=f(x)=
(Ⅰ)讨论函数f(x)的奇偶性,单调性,极值;
(Ⅱ)讨论曲线y=f(x)的凹凸性,拐点,渐近线,并根据以上(Ⅰ)、(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
选项
答案
(Ⅰ)因为二次式x
2
±x+1的判别式(±1)
2
-4=-3<0,所以x
2
±x+1>0,f(x)的定义域为(-∞,+∞). 又f(x)=-f(x),所以f(x)为奇函数. [*] 当0≤x≤[*]时,f′(x)<0.当x>[*]时,f′(x)的分子中两项记为a,b,a>0,b>0,考虑 a
2
-b
2
=[(2x-1)[*] =-6x<0, 故0<a<b.所以当x>[*]时,仍有f′(x)<0,从而当0≤x<+∞时,f′(x)<0.又f(x)为奇函数,故当-∞<x<0时,f′(x)<0.所以当x∈(-∞,+∞)时,均有f′(x)<0,即f(x)在(-∞,+∞)上严格单调减少,f(x)无极值. (Ⅱ) [*] f″(0)=0. 所以当-∞<x<0时,曲线y=f(x)是凸的,当0<x<+∞时,曲线是凹的.点(0,f(0))为拐点. 易知无铅直渐近线.考虑水平渐近线: [*] 所以沿x→+∞方向有水平渐近线y=-1.由于f(x)为奇函数,所以沿x→-∞方向有一条水平渐近线y=1. 画图如下: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QXN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=______.
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
曲线上对应点t=2处的切线方程为_______.
在半径为R的圆的一切内接三角形中,求出其面积最大者.
设f(x)在(一∞,+∞)上可导,且其反函数存在为g(x).若∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1,则当一∞<x<+∞时.f(x)=______.
设α(1,2,3,4)T,β(3,-2,-1,1)T,A=αβT.问A能否相似于对角矩阵?说明理由.
(00年)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
随机试题
糖酵解过程中催化ATP生成的酶是
西替利嗪的药理作用包括()。
在仲裁程序中,一方当事人因另一方当事人的行为或者其他原因,可能使裁决不能执行或者难以执行的,可以申请采取财产保全措施。申请财产保全的正确程序是什么?
下列社会保险险种中,企业职工个人不缴费的是()。
某公司某年1~3月预计的销售收入分别为220万元、350万元和380万元,当月销售当月收现70%,下月收现20%,再下月收现10%,则该年3月31日资产负债表“应收账款”项目金额和该年3月的销售现金流入分别为()万元。
有利于教育逐级普及的学制是()。
先给被试呈现线段a,待其消失60毫秒后,再呈现线段b,人们会看到线段a向线段b移动,这种现象称为()
下列叙述中正确的是
A、Theymaylosethebackpart.B、Theymaystraintheirmuscles.C、Theymayfinditeasiertoliftonebyone.D、Theymaycallso
Newtechnologylinkstheworldasneverbefore.Ourplanethasshrunk.It’snowa"globalvillage"wherecountriesareonlyseco
最新回复
(
0
)