首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设的一个基础解系为,写出的通解并说明理由。
设的一个基础解系为,写出的通解并说明理由。
admin
2021-11-25
45
问题
设
的一个基础解系为
,写出
的通解并说明理由。
选项
答案
[*] [*] 则(Ⅱ)可写为BY=0,因为β
1
,β
2
,β
3
,…,β
n
为(Ⅰ)的基础解系,因此r(A)=n,β
1
,β
2
,β
3
,…,β
n
线性无关,Aβ
1
=Aβ
2
=Aβ
3
=…=Aβ
n
=0→A(β
1
,β
2
,β
3
,…,β
n
)=O→AB
T
=O→BA
T
=O→α
1
T
,α
2
T
,α
3
T
...,α
n
T
为BY=0的一个基础解系,通解为k
1
α
1
T
,k
2
α
2
T
+k
3
α
3
T
+...+k
n
α
n
T
(k
1
,k
2
,k
3
,...,k
n
为任意常数)。
解析
转载请注明原文地址:https://kaotiyun.com/show/xpy4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
若f(x)=2nx(1-x)n,记Mn=,则=_________.
证明:
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ1,χ2,χ3使f′(χ)=(b+a)
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是()
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
--Willyoucometothepartythisweekend?--______.
患者男,72岁。因进食时误吞鸭骨后吞咽困难和吞咽疼痛6小时,在当地医院就诊,经照X线片发现食管中段有不透光的阴影,由于当地医院条件有限,仅给予抗感染、对症和支持治疗两天,症状无明显缓解,且出现背部及胸骨后疼痛,多次呕吐,呕吐物为唾液样物,其中两次带有少许鲜
A、0B、∞C、5/4D、3/5C由—般结论
大气环境评价中的监测点的布设应尽量()反映评价范围内的环境空气质量。
Nowletuslookathowweread.Whenwereadaprintedtext,oureyesmoveacrossapageinashort,jerkymovement.Werecognizewo
大足宝顶山石刻在造像上不局限于佛像的宗教题材,而且用大画面、广角度、全方位反映于当时的社会生活、伦理道德、民间疾苦,是不可多得的世俗风情画,最突出表现有()。
在知识经济勃兴的今天,阅读已不仅仅关乎个人的修身养性,更攸关一个国家的国民素质和竞争力。因为,阅读习惯和阅读能力的欠缺将极大地损害人们的想象力和创造力,而想象力和创造力是一个国家一个民族永葆活力的源泉。有一个严峻的事实我们不得不面对:当代世界的知识创新、科
人类历史上,技术革命往往和社会发展的__________相互作用,互为因果。今天,以微博为代表的互联网技术应用正__________着它推进社会生活各个领域发生变化的巨大潜能。依次填入划横线部分最恰当的一项是()。
TheAmericansandEnglishmenbothspeakEnglish.AmericansandEnglishmenhavedifficultiesinunderstandingeachother.
Thewoman’snameisMaryJoanShute.Youmaycallher______.
最新回复
(
0
)